{"title":"硬底片还是非底片?基于改进边际排序损失的跨模态检索硬负选择策略","authors":"Damianos Galanopoulos, V. Mezaris","doi":"10.1109/ICCVW54120.2021.00261","DOIUrl":null,"url":null,"abstract":"Cross-modal learning has gained a lot of interest recently, and many applications of it, such as image-text retrieval, cross-modal video search, or video captioning have been proposed. In this work, we deal with the cross-modal video retrieval problem. The state-of-the-art approaches are based on deep network architectures, and rely on mining hard-negative samples during training to optimize the selection of the network’s parameters. Starting from a state-of-the-art cross-modal architecture that uses the improved marginal ranking loss function, we propose a simple strategy for hard-negative mining to identify which training samples are hard-negatives and which, although presently treated as hard-negatives, are likely not negative samples at all and shouldn’t be treated as such. Additionally, to take full advantage of network models trained using different de-sign choices for hard-negative mining, we examine model combination strategies, and we design a hybrid one effectively combining large numbers of trained models.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hard-Negatives or Non-Negatives? A Hard-Negative Selection Strategy for Cross-Modal Retrieval Using the Improved Marginal Ranking Loss\",\"authors\":\"Damianos Galanopoulos, V. Mezaris\",\"doi\":\"10.1109/ICCVW54120.2021.00261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-modal learning has gained a lot of interest recently, and many applications of it, such as image-text retrieval, cross-modal video search, or video captioning have been proposed. In this work, we deal with the cross-modal video retrieval problem. The state-of-the-art approaches are based on deep network architectures, and rely on mining hard-negative samples during training to optimize the selection of the network’s parameters. Starting from a state-of-the-art cross-modal architecture that uses the improved marginal ranking loss function, we propose a simple strategy for hard-negative mining to identify which training samples are hard-negatives and which, although presently treated as hard-negatives, are likely not negative samples at all and shouldn’t be treated as such. Additionally, to take full advantage of network models trained using different de-sign choices for hard-negative mining, we examine model combination strategies, and we design a hybrid one effectively combining large numbers of trained models.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"283 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hard-Negatives or Non-Negatives? A Hard-Negative Selection Strategy for Cross-Modal Retrieval Using the Improved Marginal Ranking Loss
Cross-modal learning has gained a lot of interest recently, and many applications of it, such as image-text retrieval, cross-modal video search, or video captioning have been proposed. In this work, we deal with the cross-modal video retrieval problem. The state-of-the-art approaches are based on deep network architectures, and rely on mining hard-negative samples during training to optimize the selection of the network’s parameters. Starting from a state-of-the-art cross-modal architecture that uses the improved marginal ranking loss function, we propose a simple strategy for hard-negative mining to identify which training samples are hard-negatives and which, although presently treated as hard-negatives, are likely not negative samples at all and shouldn’t be treated as such. Additionally, to take full advantage of network models trained using different de-sign choices for hard-negative mining, we examine model combination strategies, and we design a hybrid one effectively combining large numbers of trained models.