一种不确定性感知人脸聚类算法

Biplob K. Debnath, G. Coviello, Yi Yang, S. Chakradhar
{"title":"一种不确定性感知人脸聚类算法","authors":"Biplob K. Debnath, G. Coviello, Yi Yang, S. Chakradhar","doi":"10.1109/ICCVW54120.2021.00388","DOIUrl":null,"url":null,"abstract":"We investigate ways to leverage uncertainty in face images to improve the quality of the face clusters. We observe that popular clustering algorithms do not produce better quality clusters when clustering probabilistic face representations that implicitly model uncertainty – these algorithms predict up to 9.6X more clusters than the ground truth for the IJB-A benchmark. We empirically analyze the causes for this unexpected behavior and identify excessive false-positives and false-negatives (when comparing face-pairs) as the main reasons for poor quality clustering. Based on this insight, we propose an uncertainty-aware clustering algorithm, UAC, which explicitly leverages uncertainty information during clustering to decide when a pair of faces are similar or when a predicted cluster should be discarded. UAC considers (a) uncertainty of faces in face-pairs, (b) bins face-pairs into different categories based on an uncertainty threshold, (c) intelligently varies the similarity threshold during clustering to reduce false-negatives and false-positives, and (d) discards predicted clusters that exhibit a high measure of uncertainty. Extensive experimental results on several popular benchmarks and comparisons with state-of-the-art clustering methods show that UAC produces significantly better clusters by leveraging uncertainty in face images – predicted number of clusters is up to 0.18X more of the ground truth for the IJB-A benchmark.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"UAC: An Uncertainty-Aware Face Clustering Algorithm\",\"authors\":\"Biplob K. Debnath, G. Coviello, Yi Yang, S. Chakradhar\",\"doi\":\"10.1109/ICCVW54120.2021.00388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate ways to leverage uncertainty in face images to improve the quality of the face clusters. We observe that popular clustering algorithms do not produce better quality clusters when clustering probabilistic face representations that implicitly model uncertainty – these algorithms predict up to 9.6X more clusters than the ground truth for the IJB-A benchmark. We empirically analyze the causes for this unexpected behavior and identify excessive false-positives and false-negatives (when comparing face-pairs) as the main reasons for poor quality clustering. Based on this insight, we propose an uncertainty-aware clustering algorithm, UAC, which explicitly leverages uncertainty information during clustering to decide when a pair of faces are similar or when a predicted cluster should be discarded. UAC considers (a) uncertainty of faces in face-pairs, (b) bins face-pairs into different categories based on an uncertainty threshold, (c) intelligently varies the similarity threshold during clustering to reduce false-negatives and false-positives, and (d) discards predicted clusters that exhibit a high measure of uncertainty. Extensive experimental results on several popular benchmarks and comparisons with state-of-the-art clustering methods show that UAC produces significantly better clusters by leveraging uncertainty in face images – predicted number of clusters is up to 0.18X more of the ground truth for the IJB-A benchmark.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了利用人脸图像中的不确定性来提高人脸聚类质量的方法。我们观察到,当聚类概率面对隐式建模不确定性的表示时,流行的聚类算法并不能产生更好质量的聚类——这些算法预测的聚类比IJB-A基准的基本事实多9.6倍。我们实证分析了这种意外行为的原因,并确定了过多的假阳性和假阴性(在比较面孔对时)是聚类质量差的主要原因。基于这一见解,我们提出了一种不确定性感知聚类算法UAC,该算法在聚类过程中明确地利用不确定性信息来决定一对人脸何时相似或何时应该丢弃预测的聚类。UAC考虑(a)面孔对中的不确定性,(b)基于不确定性阈值将面孔对分成不同的类别,(c)在聚类过程中智能地改变相似性阈值以减少假阴性和假阳性,以及(d)丢弃表现出高度不确定性的预测聚类。在几个流行的基准上进行的大量实验结果以及与最先进的聚类方法的比较表明,UAC通过利用人脸图像中的不确定性产生了更好的聚类——预测的聚类数量是IJB-A基准的0.18倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UAC: An Uncertainty-Aware Face Clustering Algorithm
We investigate ways to leverage uncertainty in face images to improve the quality of the face clusters. We observe that popular clustering algorithms do not produce better quality clusters when clustering probabilistic face representations that implicitly model uncertainty – these algorithms predict up to 9.6X more clusters than the ground truth for the IJB-A benchmark. We empirically analyze the causes for this unexpected behavior and identify excessive false-positives and false-negatives (when comparing face-pairs) as the main reasons for poor quality clustering. Based on this insight, we propose an uncertainty-aware clustering algorithm, UAC, which explicitly leverages uncertainty information during clustering to decide when a pair of faces are similar or when a predicted cluster should be discarded. UAC considers (a) uncertainty of faces in face-pairs, (b) bins face-pairs into different categories based on an uncertainty threshold, (c) intelligently varies the similarity threshold during clustering to reduce false-negatives and false-positives, and (d) discards predicted clusters that exhibit a high measure of uncertainty. Extensive experimental results on several popular benchmarks and comparisons with state-of-the-art clustering methods show that UAC produces significantly better clusters by leveraging uncertainty in face images – predicted number of clusters is up to 0.18X more of the ground truth for the IJB-A benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信