基于局部指针网络的知识库实体精确描述生成

Shyh-Horng Yeh, Hen-Hsen Huang, Hsin-Hsi Chen
{"title":"基于局部指针网络的知识库实体精确描述生成","authors":"Shyh-Horng Yeh, Hen-Hsen Huang, Hsin-Hsi Chen","doi":"10.1109/WI.2018.00-87","DOIUrl":null,"url":null,"abstract":"Verbalization of knowledge base (KB) facts about an entity allows users to absorb information from KB more easily. The drawback of most previous work is that they cannot generalize to unseen frames. This work introduces the task of precise KB verbalization that is aimed at generating an exact description for the given factual triples. We propose a novel sequence-to-sequence (seq2seq) model with the local pointer network to deal with this task. The approach to training data construction is also explored. Experimental results show our method improves the performances in terms of Meteor and slot error rates. Human evaluation is also performed to confirm the effectiveness of our model.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Precise Description Generation for Knowledge Base Entities with Local Pointer Network\",\"authors\":\"Shyh-Horng Yeh, Hen-Hsen Huang, Hsin-Hsi Chen\",\"doi\":\"10.1109/WI.2018.00-87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Verbalization of knowledge base (KB) facts about an entity allows users to absorb information from KB more easily. The drawback of most previous work is that they cannot generalize to unseen frames. This work introduces the task of precise KB verbalization that is aimed at generating an exact description for the given factual triples. We propose a novel sequence-to-sequence (seq2seq) model with the local pointer network to deal with this task. The approach to training data construction is also explored. Experimental results show our method improves the performances in terms of Meteor and slot error rates. Human evaluation is also performed to confirm the effectiveness of our model.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.00-87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00-87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

关于实体的知识库(KB)事实的语言化允许用户更容易地从知识库中吸收信息。大多数先前工作的缺点是它们不能推广到看不见的帧。这项工作介绍了精确知识库语言化的任务,其目的是为给定的事实三元组生成准确的描述。我们提出了一种基于局部指针网络的序列到序列(seq2seq)模型来解决这一问题。本文还探讨了训练数据构建的方法。实验结果表明,该方法在流星误码率和时隙错误率方面都有较大的提高。人类评估也被执行,以确认我们的模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise Description Generation for Knowledge Base Entities with Local Pointer Network
Verbalization of knowledge base (KB) facts about an entity allows users to absorb information from KB more easily. The drawback of most previous work is that they cannot generalize to unseen frames. This work introduces the task of precise KB verbalization that is aimed at generating an exact description for the given factual triples. We propose a novel sequence-to-sequence (seq2seq) model with the local pointer network to deal with this task. The approach to training data construction is also explored. Experimental results show our method improves the performances in terms of Meteor and slot error rates. Human evaluation is also performed to confirm the effectiveness of our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信