A. Papanikolaou, G. Zaraphonitis, M. Jokinen, A. Aubert, Stephan Harries, J. Marzi, George Mermiris, Rachmat Gunawan
{"title":"绿色航运的整体船舶设计","authors":"A. Papanikolaou, G. Zaraphonitis, M. Jokinen, A. Aubert, Stephan Harries, J. Marzi, George Mermiris, Rachmat Gunawan","doi":"10.5957/smc-2022-020","DOIUrl":null,"url":null,"abstract":"The pattern of seaborne trade and goods transportation is changing and ships need to adapt to changes of customer and market requirements, cargo volumes, and new legislation for the safety of ships and nowadays, even more, to the strict regulatory requirements for the protection of the environment. Responding to the urgent needs for substantial reduction of GHG (Green House gas) emissions from marine operations in line with the ambitious targets set by the International Maritime Organisation and the European Commission, a series of research and development works were initiated in the maritime sector for the ships designed and built today and be operating in the next decades to meet future environmental requirements. Responding to these needs, the recently completed Horizon 2020 European Research project – HOLISHIP – Holistic Optimisation of Ship Design and Operation for Life Cycle (2016-2020) has developed suitable tools and software platforms, as necessary for the creation of innovative design solutions meeting the set low emission strategic objectives. The present paper is presenting the HOLISHIP, multi-objective optimisation approach to green shipping and demonstrates a subset of its functionality by two green design RoPAX case studies.","PeriodicalId":336268,"journal":{"name":"Day 2 Wed, September 28, 2022","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holistic Ship Design for Green Shipping\",\"authors\":\"A. Papanikolaou, G. Zaraphonitis, M. Jokinen, A. Aubert, Stephan Harries, J. Marzi, George Mermiris, Rachmat Gunawan\",\"doi\":\"10.5957/smc-2022-020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pattern of seaborne trade and goods transportation is changing and ships need to adapt to changes of customer and market requirements, cargo volumes, and new legislation for the safety of ships and nowadays, even more, to the strict regulatory requirements for the protection of the environment. Responding to the urgent needs for substantial reduction of GHG (Green House gas) emissions from marine operations in line with the ambitious targets set by the International Maritime Organisation and the European Commission, a series of research and development works were initiated in the maritime sector for the ships designed and built today and be operating in the next decades to meet future environmental requirements. Responding to these needs, the recently completed Horizon 2020 European Research project – HOLISHIP – Holistic Optimisation of Ship Design and Operation for Life Cycle (2016-2020) has developed suitable tools and software platforms, as necessary for the creation of innovative design solutions meeting the set low emission strategic objectives. The present paper is presenting the HOLISHIP, multi-objective optimisation approach to green shipping and demonstrates a subset of its functionality by two green design RoPAX case studies.\",\"PeriodicalId\":336268,\"journal\":{\"name\":\"Day 2 Wed, September 28, 2022\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 28, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5957/smc-2022-020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 28, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/smc-2022-020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The pattern of seaborne trade and goods transportation is changing and ships need to adapt to changes of customer and market requirements, cargo volumes, and new legislation for the safety of ships and nowadays, even more, to the strict regulatory requirements for the protection of the environment. Responding to the urgent needs for substantial reduction of GHG (Green House gas) emissions from marine operations in line with the ambitious targets set by the International Maritime Organisation and the European Commission, a series of research and development works were initiated in the maritime sector for the ships designed and built today and be operating in the next decades to meet future environmental requirements. Responding to these needs, the recently completed Horizon 2020 European Research project – HOLISHIP – Holistic Optimisation of Ship Design and Operation for Life Cycle (2016-2020) has developed suitable tools and software platforms, as necessary for the creation of innovative design solutions meeting the set low emission strategic objectives. The present paper is presenting the HOLISHIP, multi-objective optimisation approach to green shipping and demonstrates a subset of its functionality by two green design RoPAX case studies.