Hang Lin , Xuran Ding , Rui Yong , Wanzhong Xu , Shigui Du
{"title":"非持久节理分布对剪切性能的影响","authors":"Hang Lin , Xuran Ding , Rui Yong , Wanzhong Xu , Shigui Du","doi":"10.1016/j.crme.2019.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The particle flow code 2D (PFC2D) is used to establish a coplanar, non-persistent joint model. Three joint distribution types, namely, both-side (type a), scattered (type b), and central (type c), are set according to their position. Numerical simulations of the direct shear test are conducted to investigate the effect of non-persistent joint distribution and connectivity on shear mechanical behavior. Simulation results are in good agreement with the analytical solutions to Jennings' criterion, and show: (1) type-c and type-b joints have high strength, whereas type-a joints have low strength. Shear strength and modulus increase with a decrease in joint persistency, and the shear displacement that correspond to shear strength increases with a decrease in persistency. (2) The brittle failure characteristics of the sample are evident when the intact rock bridge area is large. Reinforcement at both ends of the joint limits shear deformation, and shear strength can be effectively improved when joint persistency is large. The small-area dispersed reinforcement joint method cannot effectively improve shear strength. (3) The comprehensive shear strength parameters and the shear strength of the non-persistent joints can be predicted well using Jennings' criterion. Cohesion is the dominant factor that controls shear strength.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 6","pages":"Pages 477-489"},"PeriodicalIF":1.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.05.001","citationCount":"36","resultStr":"{\"title\":\"Effect of non-persistent joints distribution on shear behavior\",\"authors\":\"Hang Lin , Xuran Ding , Rui Yong , Wanzhong Xu , Shigui Du\",\"doi\":\"10.1016/j.crme.2019.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The particle flow code 2D (PFC2D) is used to establish a coplanar, non-persistent joint model. Three joint distribution types, namely, both-side (type a), scattered (type b), and central (type c), are set according to their position. Numerical simulations of the direct shear test are conducted to investigate the effect of non-persistent joint distribution and connectivity on shear mechanical behavior. Simulation results are in good agreement with the analytical solutions to Jennings' criterion, and show: (1) type-c and type-b joints have high strength, whereas type-a joints have low strength. Shear strength and modulus increase with a decrease in joint persistency, and the shear displacement that correspond to shear strength increases with a decrease in persistency. (2) The brittle failure characteristics of the sample are evident when the intact rock bridge area is large. Reinforcement at both ends of the joint limits shear deformation, and shear strength can be effectively improved when joint persistency is large. The small-area dispersed reinforcement joint method cannot effectively improve shear strength. (3) The comprehensive shear strength parameters and the shear strength of the non-persistent joints can be predicted well using Jennings' criterion. Cohesion is the dominant factor that controls shear strength.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"347 6\",\"pages\":\"Pages 477-489\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.05.001\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119300841\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119300841","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Effect of non-persistent joints distribution on shear behavior
The particle flow code 2D (PFC2D) is used to establish a coplanar, non-persistent joint model. Three joint distribution types, namely, both-side (type a), scattered (type b), and central (type c), are set according to their position. Numerical simulations of the direct shear test are conducted to investigate the effect of non-persistent joint distribution and connectivity on shear mechanical behavior. Simulation results are in good agreement with the analytical solutions to Jennings' criterion, and show: (1) type-c and type-b joints have high strength, whereas type-a joints have low strength. Shear strength and modulus increase with a decrease in joint persistency, and the shear displacement that correspond to shear strength increases with a decrease in persistency. (2) The brittle failure characteristics of the sample are evident when the intact rock bridge area is large. Reinforcement at both ends of the joint limits shear deformation, and shear strength can be effectively improved when joint persistency is large. The small-area dispersed reinforcement joint method cannot effectively improve shear strength. (3) The comprehensive shear strength parameters and the shear strength of the non-persistent joints can be predicted well using Jennings' criterion. Cohesion is the dominant factor that controls shear strength.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.