{"title":"多变量时间序列预测的时空GNN网络滤波","authors":"Yuanrong Wang, T. Aste","doi":"10.1145/3533271.3561678","DOIUrl":null,"url":null,"abstract":"We propose an architecture for multivariate time-series prediction that integrates a spatial-temporal graph neural network with a filtering module which filters the inverse correlation matrix into a sparse network structure. In contrast with existing sparsification methods adopted in graph neural networks, our model explicitly leverages time-series filtering to overcome the low signal-to-noise ratio typical of complex systems data. We present a set of experiments, where we predict future sales volume from a synthetic time-series sales volume dataset. The proposed spatial-temporal graph neural network displays superior performances to baseline approaches with no graphical information, fully connected, disconnected graphs, and unfiltered graphs, as well as the state-of-the-art spatial-temporal GNN. Comparison of the results with Diffusion Convolutional Recurrent Neural Network (DCRNN) suggests that, by combining a (inferior) GNN with graph sparsification and filtering, one can achieve comparable or better efficacy than the state-of-the-art in multivariate time-series regression.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Network Filtering of Spatial-temporal GNN for Multivariate Time-series Prediction\",\"authors\":\"Yuanrong Wang, T. Aste\",\"doi\":\"10.1145/3533271.3561678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an architecture for multivariate time-series prediction that integrates a spatial-temporal graph neural network with a filtering module which filters the inverse correlation matrix into a sparse network structure. In contrast with existing sparsification methods adopted in graph neural networks, our model explicitly leverages time-series filtering to overcome the low signal-to-noise ratio typical of complex systems data. We present a set of experiments, where we predict future sales volume from a synthetic time-series sales volume dataset. The proposed spatial-temporal graph neural network displays superior performances to baseline approaches with no graphical information, fully connected, disconnected graphs, and unfiltered graphs, as well as the state-of-the-art spatial-temporal GNN. Comparison of the results with Diffusion Convolutional Recurrent Neural Network (DCRNN) suggests that, by combining a (inferior) GNN with graph sparsification and filtering, one can achieve comparable or better efficacy than the state-of-the-art in multivariate time-series regression.\",\"PeriodicalId\":134888,\"journal\":{\"name\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533271.3561678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network Filtering of Spatial-temporal GNN for Multivariate Time-series Prediction
We propose an architecture for multivariate time-series prediction that integrates a spatial-temporal graph neural network with a filtering module which filters the inverse correlation matrix into a sparse network structure. In contrast with existing sparsification methods adopted in graph neural networks, our model explicitly leverages time-series filtering to overcome the low signal-to-noise ratio typical of complex systems data. We present a set of experiments, where we predict future sales volume from a synthetic time-series sales volume dataset. The proposed spatial-temporal graph neural network displays superior performances to baseline approaches with no graphical information, fully connected, disconnected graphs, and unfiltered graphs, as well as the state-of-the-art spatial-temporal GNN. Comparison of the results with Diffusion Convolutional Recurrent Neural Network (DCRNN) suggests that, by combining a (inferior) GNN with graph sparsification and filtering, one can achieve comparable or better efficacy than the state-of-the-art in multivariate time-series regression.