群的自由阿贝尔化扩展的同调性

L. Kovach, Yu. V. Kuz’min, R. Shter
{"title":"群的自由阿贝尔化扩展的同调性","authors":"L. Kovach, Yu. V. Kuz’min, R. Shter","doi":"10.1070/SM1992V072N02ABEH001416","DOIUrl":null,"url":null,"abstract":"Let G be a group given by a free presentation G = F/N, and N' the commutator subgroup of N. The quotient F/N' is called a free abelianized extension of G. We study the homology of F/N' with trivial coefficients. In particular, for torsion-free G our main result yields a complete description of the odd torsion in the integral homology of F/N' in terms of the mod p homology of G.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"HOMOLOGY OF FREE ABELIANIZED EXTENSIONS OF GROUPS\",\"authors\":\"L. Kovach, Yu. V. Kuz’min, R. Shter\",\"doi\":\"10.1070/SM1992V072N02ABEH001416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a group given by a free presentation G = F/N, and N' the commutator subgroup of N. The quotient F/N' is called a free abelianized extension of G. We study the homology of F/N' with trivial coefficients. In particular, for torsion-free G our main result yields a complete description of the odd torsion in the integral homology of F/N' in terms of the mod p homology of G.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V072N02ABEH001416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V072N02ABEH001416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

设G是由自由表示G = F/N给出的群,N'是N的对易子群。商F/N'称为G的自由阿贝尔化扩展。我们研究了F/N'与平凡系数的同调。特别地,对于无扭转的G,我们的主要结果给出了用G的模p同调来描述F/N'的积分同调中的奇扭转的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HOMOLOGY OF FREE ABELIANIZED EXTENSIONS OF GROUPS
Let G be a group given by a free presentation G = F/N, and N' the commutator subgroup of N. The quotient F/N' is called a free abelianized extension of G. We study the homology of F/N' with trivial coefficients. In particular, for torsion-free G our main result yields a complete description of the odd torsion in the integral homology of F/N' in terms of the mod p homology of G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信