条件随机场的分布式训练

Xiaojun Lin, Liang Zhao, Dianhai Yu, Xihong Wu
{"title":"条件随机场的分布式训练","authors":"Xiaojun Lin, Liang Zhao, Dianhai Yu, Xihong Wu","doi":"10.1109/NLPKE.2010.5587803","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel distributed training method of Conditional Random Fields (CRFs) by utilizing the clusters built from commodity computers. The method employs Message Passing Interface (MPI) to deal with large-scale data in two steps. Firstly, the entire training data is divided into several small pieces, each of which can be handled by one node. Secondly, instead of adopting a root node to collect all features, a new criterion is used to split the whole feature set into non-overlapping subsets and ensure that each node maintains the global information of one feature subset. Experiments are carried out on the task of Chinese word segmentation (WS) with large scale data, and we observed significant reduction on both training time and space, while preserving the performance.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Distributed training for Conditional Random Fields\",\"authors\":\"Xiaojun Lin, Liang Zhao, Dianhai Yu, Xihong Wu\",\"doi\":\"10.1109/NLPKE.2010.5587803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel distributed training method of Conditional Random Fields (CRFs) by utilizing the clusters built from commodity computers. The method employs Message Passing Interface (MPI) to deal with large-scale data in two steps. Firstly, the entire training data is divided into several small pieces, each of which can be handled by one node. Secondly, instead of adopting a root node to collect all features, a new criterion is used to split the whole feature set into non-overlapping subsets and ensure that each node maintains the global information of one feature subset. Experiments are carried out on the task of Chinese word segmentation (WS) with large scale data, and we observed significant reduction on both training time and space, while preserving the performance.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的条件随机场(CRFs)分布式训练方法,该方法利用商用计算机构建的聚类进行训练。该方法采用消息传递接口(Message Passing Interface, MPI)分两步处理大规模数据。首先,将整个训练数据分成几个小块,每个小块可以由一个节点处理。其次,不再采用根节点收集所有特征,而是采用新的准则将整个特征集分割成不重叠的子集,并保证每个节点保持一个特征子集的全局信息;对大规模数据的中文分词(WS)任务进行了实验,在保持性能的前提下,我们观察到训练时间和空间的显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed training for Conditional Random Fields
This paper proposes a novel distributed training method of Conditional Random Fields (CRFs) by utilizing the clusters built from commodity computers. The method employs Message Passing Interface (MPI) to deal with large-scale data in two steps. Firstly, the entire training data is divided into several small pieces, each of which can be handled by one node. Secondly, instead of adopting a root node to collect all features, a new criterion is used to split the whole feature set into non-overlapping subsets and ensure that each node maintains the global information of one feature subset. Experiments are carried out on the task of Chinese word segmentation (WS) with large scale data, and we observed significant reduction on both training time and space, while preserving the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信