基于hankel的低信噪比奇异矢量源枚举

Pan Jiang, Kainan Yan, Hairong Zhang, Guijin Yao, Ling Li
{"title":"基于hankel的低信噪比奇异矢量源枚举","authors":"Pan Jiang, Kainan Yan, Hairong Zhang, Guijin Yao, Ling Li","doi":"10.1109/WCSP.2015.7341000","DOIUrl":null,"url":null,"abstract":"Most existing source enumeration methods provide a satisfactory performance in high or middle signal-to-noise ratio (SNR), but almost lose effectiveness at low SNR. This paper proposed a source enumeration method based on squared Euclidean norm of the vector, the multiplication of the steering matrix and the left singular value vector of Hankel matrices for low SNR, which introduces the construction of abundant Hankel matrices with the different reference signals and changeable dimensions, and takes advantage of orthogonality of signal and noise, then employs the spatial smoothing scheme to dispose the dimension mismatched problem. Simulations validate the superiority of the proposed approach over the Akaike information criterion(AIC) and the minimum description length(MDL) for both coherent and non-coherent signals in terms of low SNR situation.","PeriodicalId":164776,"journal":{"name":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hankel-based singular vector source enumeration for low signal-to-noise ratio\",\"authors\":\"Pan Jiang, Kainan Yan, Hairong Zhang, Guijin Yao, Ling Li\",\"doi\":\"10.1109/WCSP.2015.7341000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing source enumeration methods provide a satisfactory performance in high or middle signal-to-noise ratio (SNR), but almost lose effectiveness at low SNR. This paper proposed a source enumeration method based on squared Euclidean norm of the vector, the multiplication of the steering matrix and the left singular value vector of Hankel matrices for low SNR, which introduces the construction of abundant Hankel matrices with the different reference signals and changeable dimensions, and takes advantage of orthogonality of signal and noise, then employs the spatial smoothing scheme to dispose the dimension mismatched problem. Simulations validate the superiority of the proposed approach over the Akaike information criterion(AIC) and the minimum description length(MDL) for both coherent and non-coherent signals in terms of low SNR situation.\",\"PeriodicalId\":164776,\"journal\":{\"name\":\"2015 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2015.7341000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2015.7341000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数现有的信噪比枚举方法在高信噪比或中等信噪比时都能获得满意的性能,但在低信噪比时几乎失去了有效性。针对低信噪比,本文提出了一种基于向量欧式范数平方、转向矩阵与汉克尔矩阵左奇异值向量相乘的源枚举方法,该方法引入了具有不同参考信号和可变维数的丰富汉克尔矩阵的构造,利用信噪正交性,采用空间平滑方案处理维数不匹配问题。仿真结果表明,在低信噪比情况下,该方法优于赤池信息准则(AIC)和最小描述长度(MDL),适用于相干和非相干信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hankel-based singular vector source enumeration for low signal-to-noise ratio
Most existing source enumeration methods provide a satisfactory performance in high or middle signal-to-noise ratio (SNR), but almost lose effectiveness at low SNR. This paper proposed a source enumeration method based on squared Euclidean norm of the vector, the multiplication of the steering matrix and the left singular value vector of Hankel matrices for low SNR, which introduces the construction of abundant Hankel matrices with the different reference signals and changeable dimensions, and takes advantage of orthogonality of signal and noise, then employs the spatial smoothing scheme to dispose the dimension mismatched problem. Simulations validate the superiority of the proposed approach over the Akaike information criterion(AIC) and the minimum description length(MDL) for both coherent and non-coherent signals in terms of low SNR situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信