{"title":"学生t分布矩:一个统一的方法","authors":"J. Kirkby, Dang Nguyen, D. Nguyen","doi":"10.2139/ssrn.3497188","DOIUrl":null,"url":null,"abstract":"In this note, we derive the closed form formulae for moments of Student's t-distribution in the one dimensional case as well as in higher dimensions through a unified probability framework. Interestingly, the closed form expressions for the moments of Student's t-distribution can be written in terms of the familiar Gamma function, Kummer's confluent hypergeometric function, and the hypergeometric function.","PeriodicalId":363330,"journal":{"name":"Computation Theory eJournal","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Moments of Student's t-distribution: A Unified Approach\",\"authors\":\"J. Kirkby, Dang Nguyen, D. Nguyen\",\"doi\":\"10.2139/ssrn.3497188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we derive the closed form formulae for moments of Student's t-distribution in the one dimensional case as well as in higher dimensions through a unified probability framework. Interestingly, the closed form expressions for the moments of Student's t-distribution can be written in terms of the familiar Gamma function, Kummer's confluent hypergeometric function, and the hypergeometric function.\",\"PeriodicalId\":363330,\"journal\":{\"name\":\"Computation Theory eJournal\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation Theory eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3497188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3497188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Moments of Student's t-distribution: A Unified Approach
In this note, we derive the closed form formulae for moments of Student's t-distribution in the one dimensional case as well as in higher dimensions through a unified probability framework. Interestingly, the closed form expressions for the moments of Student's t-distribution can be written in terms of the familiar Gamma function, Kummer's confluent hypergeometric function, and the hypergeometric function.