{"title":"改进三角细分方案","authors":"H. Prautzsch, G. Umlauf","doi":"10.1109/CGI.1998.694321","DOIUrl":null,"url":null,"abstract":"The authors improve the butterfly and Loop's (1987) algorithm. As a result they obtain subdivision algorithms for triangular nets which can be used to generate G/sup 1/- and G/sup 2/-surfaces, respectively.","PeriodicalId":434370,"journal":{"name":"Proceedings. Computer Graphics International (Cat. No.98EX149)","volume":"162 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Improved triangular subdivision schemes\",\"authors\":\"H. Prautzsch, G. Umlauf\",\"doi\":\"10.1109/CGI.1998.694321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors improve the butterfly and Loop's (1987) algorithm. As a result they obtain subdivision algorithms for triangular nets which can be used to generate G/sup 1/- and G/sup 2/-surfaces, respectively.\",\"PeriodicalId\":434370,\"journal\":{\"name\":\"Proceedings. Computer Graphics International (Cat. No.98EX149)\",\"volume\":\"162 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Computer Graphics International (Cat. No.98EX149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGI.1998.694321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Computer Graphics International (Cat. No.98EX149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1998.694321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The authors improve the butterfly and Loop's (1987) algorithm. As a result they obtain subdivision algorithms for triangular nets which can be used to generate G/sup 1/- and G/sup 2/-surfaces, respectively.