IEEE UV 2022“视觉遇上藻类”目标检测挑战的多模型融合解决方案

Xiaoxiao Peng, Yueyi Wang, Dayu Chen, Yuchen Tian, Keyu Huang, Jianfeng Zheng
{"title":"IEEE UV 2022“视觉遇上藻类”目标检测挑战的多模型融合解决方案","authors":"Xiaoxiao Peng, Yueyi Wang, Dayu Chen, Yuchen Tian, Keyu Huang, Jianfeng Zheng","doi":"10.1109/UV56588.2022.10185512","DOIUrl":null,"url":null,"abstract":"This report summarizes the fourth-place solution of the “Vision Meets Algae” object detection challenge held on IEEE UV’2022 focuses on object detection in marine biology images obtained through the microscope. First, we experimented with a large number of backbones and necks to improve mAP by enhancing the model structure. Then, we designed and tested a variety of data augmentation schemes based on algal characteristics from a data perspective. Finally, with multiple models ensembled adopted, our methods achieve 57.579% mAP on the test set.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"458 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-model Fusion Solution for IEEE UV 2022 “Vision Meets Algae” Object Detection Challenge\",\"authors\":\"Xiaoxiao Peng, Yueyi Wang, Dayu Chen, Yuchen Tian, Keyu Huang, Jianfeng Zheng\",\"doi\":\"10.1109/UV56588.2022.10185512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report summarizes the fourth-place solution of the “Vision Meets Algae” object detection challenge held on IEEE UV’2022 focuses on object detection in marine biology images obtained through the microscope. First, we experimented with a large number of backbones and necks to improve mAP by enhancing the model structure. Then, we designed and tested a variety of data augmentation schemes based on algal characteristics from a data perspective. Finally, with multiple models ensembled adopted, our methods achieve 57.579% mAP on the test set.\",\"PeriodicalId\":211011,\"journal\":{\"name\":\"2022 6th International Conference on Universal Village (UV)\",\"volume\":\"458 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV56588.2022.10185512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本报告总结了IEEE UV ' 2022举办的“视觉与藻类相遇”目标检测挑战赛的第四名解决方案,重点是通过显微镜获得的海洋生物图像中的目标检测。首先,我们对大量的骨干和颈部进行实验,通过增强模型结构来改进mAP。然后,我们从数据的角度设计并测试了多种基于藻类特征的数据增强方案。最后,在多个模型集成的情况下,我们的方法在测试集上的mAP达到了57.579%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-model Fusion Solution for IEEE UV 2022 “Vision Meets Algae” Object Detection Challenge
This report summarizes the fourth-place solution of the “Vision Meets Algae” object detection challenge held on IEEE UV’2022 focuses on object detection in marine biology images obtained through the microscope. First, we experimented with a large number of backbones and necks to improve mAP by enhancing the model structure. Then, we designed and tested a variety of data augmentation schemes based on algal characteristics from a data perspective. Finally, with multiple models ensembled adopted, our methods achieve 57.579% mAP on the test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信