{"title":"锌-四苯并卟啉/芳香氰化物体系的光谱空穴稳定性及激光诱导的空穴填充","authors":"Nie Yuxin, Zhao Lizeng, Wang Duoyuan, Hu Lingzhi","doi":"10.1364/shbs.1994.wd21","DOIUrl":null,"url":null,"abstract":"The importance of photon-gated persistent spectral hole burning for scientific studies and for frequency domain optical storage (FDOS) has stimulated much recent research to discover new photon-gated materials. For FDOS the practical materials should posses the characteristics of high hole formation efficiency, large multiplicity of spectral hole, good thermal and spectral stability etc.","PeriodicalId":443330,"journal":{"name":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","volume":"587 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Hole Stability and Laser Induced Hole-Filling in Zinc-Tetrabenzoporphurin/Aromatic Cyanide System\",\"authors\":\"Nie Yuxin, Zhao Lizeng, Wang Duoyuan, Hu Lingzhi\",\"doi\":\"10.1364/shbs.1994.wd21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of photon-gated persistent spectral hole burning for scientific studies and for frequency domain optical storage (FDOS) has stimulated much recent research to discover new photon-gated materials. For FDOS the practical materials should posses the characteristics of high hole formation efficiency, large multiplicity of spectral hole, good thermal and spectral stability etc.\",\"PeriodicalId\":443330,\"journal\":{\"name\":\"Spectral Hole-Burning and Related Spectroscopies: Science and Applications\",\"volume\":\"587 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectral Hole-Burning and Related Spectroscopies: Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/shbs.1994.wd21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/shbs.1994.wd21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral Hole Stability and Laser Induced Hole-Filling in Zinc-Tetrabenzoporphurin/Aromatic Cyanide System
The importance of photon-gated persistent spectral hole burning for scientific studies and for frequency domain optical storage (FDOS) has stimulated much recent research to discover new photon-gated materials. For FDOS the practical materials should posses the characteristics of high hole formation efficiency, large multiplicity of spectral hole, good thermal and spectral stability etc.