设想一种基于光的量子计算纳米机器人

Pravir Malik
{"title":"设想一种基于光的量子计算纳米机器人","authors":"Pravir Malik","doi":"10.1109/iemtronics55184.2022.9795762","DOIUrl":null,"url":null,"abstract":"By viewing light as a symmetrical, multi-layered construct, it is possible to envision a new genre of nano-cyborgs. In general cyborgs can be considered as a portmanteau of cybernetic and organic, and therefore as an entity consisting of both organic and mechatronic parts. However, in the multi-layered model of light subtle information existing in antecedent layers of light can be thought of as materializing through a process of quantization, that subsequently would require a nano-cyborg to interface with it, make sense of it, and act on it. Further quantum-level dynamics would necessitate nano-cyborgs of a tunneling type, annealing type, superposition type, and entanglement type, amongst others, that would have practical applications at nano-levels of different granularity. Such nano-cyborgs are envisioned to be built leveraging computational stratum at different levels of granularity ranging from the electromagnetic level, to the quantum particle level, to the level of atoms, to the level of molecular plans in cells. Immediate application areas of such light-based quantum-computational nano-cyborgs are envisioned to be in medical technology, material sciences, and alteration of genetic-type information, amongst others.","PeriodicalId":442879,"journal":{"name":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Envisioning A Light-Based Quantum-Computational Nano-Cyborg\",\"authors\":\"Pravir Malik\",\"doi\":\"10.1109/iemtronics55184.2022.9795762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By viewing light as a symmetrical, multi-layered construct, it is possible to envision a new genre of nano-cyborgs. In general cyborgs can be considered as a portmanteau of cybernetic and organic, and therefore as an entity consisting of both organic and mechatronic parts. However, in the multi-layered model of light subtle information existing in antecedent layers of light can be thought of as materializing through a process of quantization, that subsequently would require a nano-cyborg to interface with it, make sense of it, and act on it. Further quantum-level dynamics would necessitate nano-cyborgs of a tunneling type, annealing type, superposition type, and entanglement type, amongst others, that would have practical applications at nano-levels of different granularity. Such nano-cyborgs are envisioned to be built leveraging computational stratum at different levels of granularity ranging from the electromagnetic level, to the quantum particle level, to the level of atoms, to the level of molecular plans in cells. Immediate application areas of such light-based quantum-computational nano-cyborgs are envisioned to be in medical technology, material sciences, and alteration of genetic-type information, amongst others.\",\"PeriodicalId\":442879,\"journal\":{\"name\":\"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iemtronics55184.2022.9795762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemtronics55184.2022.9795762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过将光视为对称的多层结构,我们可以设想一种新型的纳米半机械人。一般来说,赛博格可以被认为是控制论和有机的合成词,因此作为一个由有机和机电部分组成的实体。然而,在光的多层模型中,存在于前一层光中的细微信息可以被认为是通过量子化过程实现的,随后需要纳米机器人与之交互,理解它,并对其采取行动。进一步的量子级动力学将需要隧道型、退火型、叠加型和纠缠型等纳米赛博格,它们将在不同粒度的纳米级上有实际应用。这种纳米机器人被设想在不同粒度的计算层上建立,从电磁水平到量子粒子水平,到原子水平,再到细胞中的分子计划水平。这种基于光的量子计算纳米机器人的直接应用领域被设想为医疗技术、材料科学和基因类型信息的改变等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Envisioning A Light-Based Quantum-Computational Nano-Cyborg
By viewing light as a symmetrical, multi-layered construct, it is possible to envision a new genre of nano-cyborgs. In general cyborgs can be considered as a portmanteau of cybernetic and organic, and therefore as an entity consisting of both organic and mechatronic parts. However, in the multi-layered model of light subtle information existing in antecedent layers of light can be thought of as materializing through a process of quantization, that subsequently would require a nano-cyborg to interface with it, make sense of it, and act on it. Further quantum-level dynamics would necessitate nano-cyborgs of a tunneling type, annealing type, superposition type, and entanglement type, amongst others, that would have practical applications at nano-levels of different granularity. Such nano-cyborgs are envisioned to be built leveraging computational stratum at different levels of granularity ranging from the electromagnetic level, to the quantum particle level, to the level of atoms, to the level of molecular plans in cells. Immediate application areas of such light-based quantum-computational nano-cyborgs are envisioned to be in medical technology, material sciences, and alteration of genetic-type information, amongst others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信