Jingwen Zhu, O. Omomukuyo, R. Venkatesan, Cheng Li, O. Dobre
{"title":"远距离相干光OFDM系统的射频导频相位噪声补偿","authors":"Jingwen Zhu, O. Omomukuyo, R. Venkatesan, Cheng Li, O. Dobre","doi":"10.1109/CWIT.2015.7255168","DOIUrl":null,"url":null,"abstract":"Long-haul optical transmission systems employing coherent optical orthogonal frequency division multiplexing (CO-OFDM) are sensitive to laser phase noise. This causes a common phase rotation and inter-carrier interference. An effective method to compensate for the phase noise is to insert an RF-pilot tone in the middle of the OFDM signal. This RF-pilot is used to reverse the phase distortion at the receiver. This paper presents a performance analysis of the RF-pilot phase noise compensation scheme in a simulated 64 Gb/s CO-OFDM system. The effects of various parameters including laser linewidth, Mach-Zehnder modulator drive power, pilot-to-signal ratio, and fiber launch power are investigated. A comparison with the pilot-aided common phase error compensation method is provided to show the differences in the BER performance with respect to the required overhead.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Rf-pilot phase noise compensation for long-haul coherent optical OFDM systems\",\"authors\":\"Jingwen Zhu, O. Omomukuyo, R. Venkatesan, Cheng Li, O. Dobre\",\"doi\":\"10.1109/CWIT.2015.7255168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-haul optical transmission systems employing coherent optical orthogonal frequency division multiplexing (CO-OFDM) are sensitive to laser phase noise. This causes a common phase rotation and inter-carrier interference. An effective method to compensate for the phase noise is to insert an RF-pilot tone in the middle of the OFDM signal. This RF-pilot is used to reverse the phase distortion at the receiver. This paper presents a performance analysis of the RF-pilot phase noise compensation scheme in a simulated 64 Gb/s CO-OFDM system. The effects of various parameters including laser linewidth, Mach-Zehnder modulator drive power, pilot-to-signal ratio, and fiber launch power are investigated. A comparison with the pilot-aided common phase error compensation method is provided to show the differences in the BER performance with respect to the required overhead.\",\"PeriodicalId\":426245,\"journal\":{\"name\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2015.7255168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rf-pilot phase noise compensation for long-haul coherent optical OFDM systems
Long-haul optical transmission systems employing coherent optical orthogonal frequency division multiplexing (CO-OFDM) are sensitive to laser phase noise. This causes a common phase rotation and inter-carrier interference. An effective method to compensate for the phase noise is to insert an RF-pilot tone in the middle of the OFDM signal. This RF-pilot is used to reverse the phase distortion at the receiver. This paper presents a performance analysis of the RF-pilot phase noise compensation scheme in a simulated 64 Gb/s CO-OFDM system. The effects of various parameters including laser linewidth, Mach-Zehnder modulator drive power, pilot-to-signal ratio, and fiber launch power are investigated. A comparison with the pilot-aided common phase error compensation method is provided to show the differences in the BER performance with respect to the required overhead.