不连续系统中拉萨尔不变性原理的推广

Jumei Wei, X. Mu, Rui Ma
{"title":"不连续系统中拉萨尔不变性原理的推广","authors":"Jumei Wei, X. Mu, Rui Ma","doi":"10.1109/CCDC.2012.6244562","DOIUrl":null,"url":null,"abstract":"In this paper, discontinuous righthand sides dynamical systems are considered. An extension of LaSalle invariance principle is presented by using locally Lipschitz continuous and nonpathological Lyapunnov functions. This result is used to locate chaotic attractors of studied systems, and less restrictive conditions are required. Numerical example has been given to illustrate the correctness of the theorem.","PeriodicalId":345790,"journal":{"name":"2012 24th Chinese Control and Decision Conference (CCDC)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension of LaSalle's invariance principle for discontinuous systems\",\"authors\":\"Jumei Wei, X. Mu, Rui Ma\",\"doi\":\"10.1109/CCDC.2012.6244562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, discontinuous righthand sides dynamical systems are considered. An extension of LaSalle invariance principle is presented by using locally Lipschitz continuous and nonpathological Lyapunnov functions. This result is used to locate chaotic attractors of studied systems, and less restrictive conditions are required. Numerical example has been given to illustrate the correctness of the theorem.\",\"PeriodicalId\":345790,\"journal\":{\"name\":\"2012 24th Chinese Control and Decision Conference (CCDC)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 24th Chinese Control and Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2012.6244562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2012.6244562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了不连续的右侧动力系统。利用局部Lipschitz连续非病理Lyapunnov函数,对LaSalle不变性原理进行了推广。这一结果可用于所研究系统混沌吸引子的定位,并且所需要的限制条件较少。通过数值算例说明了该定理的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extension of LaSalle's invariance principle for discontinuous systems
In this paper, discontinuous righthand sides dynamical systems are considered. An extension of LaSalle invariance principle is presented by using locally Lipschitz continuous and nonpathological Lyapunnov functions. This result is used to locate chaotic attractors of studied systems, and less restrictive conditions are required. Numerical example has been given to illustrate the correctness of the theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信