自动地名词典丰富与用户地理编码的数据

J. Gelernter, Gautam Ganesh, Hamsini Krishnakumar, Wei Zhang
{"title":"自动地名词典丰富与用户地理编码的数据","authors":"J. Gelernter, Gautam Ganesh, Hamsini Krishnakumar, Wei Zhang","doi":"10.1145/2534732.2534736","DOIUrl":null,"url":null,"abstract":"Geographical knowledge resources or gazetteers that are enriched with local information have the potential to add geographic precision to information retrieval. We have identified sources of novel local gazetteer entries in crowd-sourced OpenStreetMap and Wikimapia geotags that include geo-coordinates. We created a fuzzy match algorithm using machine learning (SVM) that checks both for approximate spelling and approximate geocoding in order to find duplicates between the crowd-sourced tags and the gazetteer in effort to absorb those tags that are novel. For each crowd-sourced tag, our algorithm generates candidate matches from the gazetteer and then ranks those candidates based on word form or geographical relations between each tag and gazetteer candidate. We compared a baseline of edit distance for candidate ranking to an SVM-trained candidate ranking model on a city level location tag match task. Experiment results show that the SVM greatly outperforms the baseline.","PeriodicalId":314116,"journal":{"name":"GEOCROWD '13","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Automatic gazetteer enrichment with user-geocoded data\",\"authors\":\"J. Gelernter, Gautam Ganesh, Hamsini Krishnakumar, Wei Zhang\",\"doi\":\"10.1145/2534732.2534736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geographical knowledge resources or gazetteers that are enriched with local information have the potential to add geographic precision to information retrieval. We have identified sources of novel local gazetteer entries in crowd-sourced OpenStreetMap and Wikimapia geotags that include geo-coordinates. We created a fuzzy match algorithm using machine learning (SVM) that checks both for approximate spelling and approximate geocoding in order to find duplicates between the crowd-sourced tags and the gazetteer in effort to absorb those tags that are novel. For each crowd-sourced tag, our algorithm generates candidate matches from the gazetteer and then ranks those candidates based on word form or geographical relations between each tag and gazetteer candidate. We compared a baseline of edit distance for candidate ranking to an SVM-trained candidate ranking model on a city level location tag match task. Experiment results show that the SVM greatly outperforms the baseline.\",\"PeriodicalId\":314116,\"journal\":{\"name\":\"GEOCROWD '13\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GEOCROWD '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534732.2534736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOCROWD '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534732.2534736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

富含当地信息的地理知识资源或地名词典有可能增加信息检索的地理准确性。我们已经在众包的OpenStreetMap和维基百科地理标签(包括地理坐标)中确定了新颖的地方地名词典条目的来源。我们使用机器学习(SVM)创建了一个模糊匹配算法,该算法检查近似拼写和近似地理编码,以便在众包标签和地名词典之间找到重复的内容,以吸收那些新颖的标签。对于每个众包标签,我们的算法从地名词典中生成候选匹配项,然后根据每个标签和地名词典候选项之间的词形或地理关系对候选项进行排名。我们将候选排序的编辑距离基线与svm训练的候选排序模型在城市级别位置标记匹配任务上进行了比较。实验结果表明,支持向量机的性能大大优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic gazetteer enrichment with user-geocoded data
Geographical knowledge resources or gazetteers that are enriched with local information have the potential to add geographic precision to information retrieval. We have identified sources of novel local gazetteer entries in crowd-sourced OpenStreetMap and Wikimapia geotags that include geo-coordinates. We created a fuzzy match algorithm using machine learning (SVM) that checks both for approximate spelling and approximate geocoding in order to find duplicates between the crowd-sourced tags and the gazetteer in effort to absorb those tags that are novel. For each crowd-sourced tag, our algorithm generates candidate matches from the gazetteer and then ranks those candidates based on word form or geographical relations between each tag and gazetteer candidate. We compared a baseline of edit distance for candidate ranking to an SVM-trained candidate ranking model on a city level location tag match task. Experiment results show that the SVM greatly outperforms the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信