基于混沌证据的神经网络和分形方法的外围铣削表面纹理建模

G. Stark, K. Moon
{"title":"基于混沌证据的神经网络和分形方法的外围铣削表面纹理建模","authors":"G. Stark, K. Moon","doi":"10.1115/imece1997-1088","DOIUrl":null,"url":null,"abstract":"\n Modeling texture of milled surfaces using analytic methods requires explicit knowledge of a large number of variables some of which change during machining. These include dynamically changing tool runout, deflection, work-piece material properties, displacement of the workpiece within its fixture and others. Due to the complexity of all factors combined, an alternative approach is presented utilizing the ability of neural networks and fractals to implicitly account for these combined conditions. In the initial model, predicted surface points are first connected using splines to reconstruct 3D surface maps. Results are presented over varying several cutting parameters. Then, replacing splines, an improved fractal method is presented that determines fractal characteristics of milled surfaces to reconstruct more representative surface maps on a small scale. The fractal character of self-similarity within surfaces as manifested by the fractal dimension provides evidence of chaos in milling.","PeriodicalId":432053,"journal":{"name":"Manufacturing Science and Engineering: Volume 1","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Texture of Peripheral-Milled Surfaces Using a Neural Network and Fractal Method With Evidence of Chaos\",\"authors\":\"G. Stark, K. Moon\",\"doi\":\"10.1115/imece1997-1088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Modeling texture of milled surfaces using analytic methods requires explicit knowledge of a large number of variables some of which change during machining. These include dynamically changing tool runout, deflection, work-piece material properties, displacement of the workpiece within its fixture and others. Due to the complexity of all factors combined, an alternative approach is presented utilizing the ability of neural networks and fractals to implicitly account for these combined conditions. In the initial model, predicted surface points are first connected using splines to reconstruct 3D surface maps. Results are presented over varying several cutting parameters. Then, replacing splines, an improved fractal method is presented that determines fractal characteristics of milled surfaces to reconstruct more representative surface maps on a small scale. The fractal character of self-similarity within surfaces as manifested by the fractal dimension provides evidence of chaos in milling.\",\"PeriodicalId\":432053,\"journal\":{\"name\":\"Manufacturing Science and Engineering: Volume 1\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Science and Engineering: Volume 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-1088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Science and Engineering: Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-1088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用解析方法对铣削表面的纹理进行建模需要明确了解大量变量,其中一些变量在加工过程中会发生变化。这些包括动态变化的刀具跳动、偏转、工件材料特性、工件在其夹具内的位移等。由于所有因素组合的复杂性,提出了一种替代方法,利用神经网络和分形的能力来隐式地解释这些组合条件。在初始模型中,首先使用样条连接预测的曲面点来重建三维曲面地图。在不同的切削参数下给出了结果。然后,用改进的分形方法代替样条,确定铣削表面的分形特征,在小尺度上重建更有代表性的表面图。分形维数所表现的表面自相似的分形特征为铣削过程中的混沌提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Texture of Peripheral-Milled Surfaces Using a Neural Network and Fractal Method With Evidence of Chaos
Modeling texture of milled surfaces using analytic methods requires explicit knowledge of a large number of variables some of which change during machining. These include dynamically changing tool runout, deflection, work-piece material properties, displacement of the workpiece within its fixture and others. Due to the complexity of all factors combined, an alternative approach is presented utilizing the ability of neural networks and fractals to implicitly account for these combined conditions. In the initial model, predicted surface points are first connected using splines to reconstruct 3D surface maps. Results are presented over varying several cutting parameters. Then, replacing splines, an improved fractal method is presented that determines fractal characteristics of milled surfaces to reconstruct more representative surface maps on a small scale. The fractal character of self-similarity within surfaces as manifested by the fractal dimension provides evidence of chaos in milling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信