{"title":"个性化多语言搜索-预测搜索结果列表语言偏好","authors":"B. Steichen, Carla Castillo, Kevin Scroggins","doi":"10.1145/3340631.3394877","DOIUrl":null,"url":null,"abstract":"With estimates suggesting that half of the world's population learns or speaks at least two languages, Web information access systems such as Web search engines need to cater for an increasing variety of individual language proficiencies and preferences. However, while significant advances have been made regarding the handling, retrieval, and automatic translation of multilingual information, there has been a relative lack of user-centered research aiming to support individual users' multilingual abilities. To address this research gap, this paper presents a series of user studies and experiments that aim to inform novel search solutions that specifically support multilingual users. In particular, the experiments presented in this paper examine the extent to which a system can predict, for a given query, what language(s) a multilingual user would prefer the search results to be in. Results from our studies show that such predictions can statistically significantly outperform a baseline model, and that users' languages and proficiencies, their current location, as well as the search topic domain and type all influence the prediction results.","PeriodicalId":417607,"journal":{"name":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Personalized Multilingual Search - Predicting Search Result List Language Preferences\",\"authors\":\"B. Steichen, Carla Castillo, Kevin Scroggins\",\"doi\":\"10.1145/3340631.3394877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With estimates suggesting that half of the world's population learns or speaks at least two languages, Web information access systems such as Web search engines need to cater for an increasing variety of individual language proficiencies and preferences. However, while significant advances have been made regarding the handling, retrieval, and automatic translation of multilingual information, there has been a relative lack of user-centered research aiming to support individual users' multilingual abilities. To address this research gap, this paper presents a series of user studies and experiments that aim to inform novel search solutions that specifically support multilingual users. In particular, the experiments presented in this paper examine the extent to which a system can predict, for a given query, what language(s) a multilingual user would prefer the search results to be in. Results from our studies show that such predictions can statistically significantly outperform a baseline model, and that users' languages and proficiencies, their current location, as well as the search topic domain and type all influence the prediction results.\",\"PeriodicalId\":417607,\"journal\":{\"name\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340631.3394877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340631.3394877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personalized Multilingual Search - Predicting Search Result List Language Preferences
With estimates suggesting that half of the world's population learns or speaks at least two languages, Web information access systems such as Web search engines need to cater for an increasing variety of individual language proficiencies and preferences. However, while significant advances have been made regarding the handling, retrieval, and automatic translation of multilingual information, there has been a relative lack of user-centered research aiming to support individual users' multilingual abilities. To address this research gap, this paper presents a series of user studies and experiments that aim to inform novel search solutions that specifically support multilingual users. In particular, the experiments presented in this paper examine the extent to which a system can predict, for a given query, what language(s) a multilingual user would prefer the search results to be in. Results from our studies show that such predictions can statistically significantly outperform a baseline model, and that users' languages and proficiencies, their current location, as well as the search topic domain and type all influence the prediction results.