希尔伯特空间框架的编织特性

P. Casazza, Richard G. Lynch
{"title":"希尔伯特空间框架的编织特性","authors":"P. Casazza, Richard G. Lynch","doi":"10.1109/SAMPTA.2015.7148861","DOIUrl":null,"url":null,"abstract":"We will prove some new results in the theory of Weaving Frames. Two frames {φi}iεI and {Ψ<sub>i</sub>}iεI in a Hilbert space H are woven if there are constants 0 <; A ≤ B so that for every subset σ ⊂ I, the family {φ<sub>i</sub>}<sub>iεσ</sub> ∪ {ψ<sub>i</sub>}<sub>iεσc</sub> is a frame for H with frame bounds A, B. We begin by introducing the main results in weaving frames. We then prove some new basic properties. This is followed by showing a fundamental connection between frames and projections, providing intuition on woven frames. Finally, a weaving equivalent of an unconditional basis for weaving Riesz bases is considered.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Weaving properties of Hilbert space frames\",\"authors\":\"P. Casazza, Richard G. Lynch\",\"doi\":\"10.1109/SAMPTA.2015.7148861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We will prove some new results in the theory of Weaving Frames. Two frames {φi}iεI and {Ψ<sub>i</sub>}iεI in a Hilbert space H are woven if there are constants 0 <; A ≤ B so that for every subset σ ⊂ I, the family {φ<sub>i</sub>}<sub>iεσ</sub> ∪ {ψ<sub>i</sub>}<sub>iεσc</sub> is a frame for H with frame bounds A, B. We begin by introducing the main results in weaving frames. We then prove some new basic properties. This is followed by showing a fundamental connection between frames and projections, providing intuition on woven frames. Finally, a weaving equivalent of an unconditional basis for weaving Riesz bases is considered.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

我们将证明织造机理论中的一些新结果。在Hilbert空间H中,如果存在常数0 i}iεσ∪{Ψi}iε σc是一个具有坐标系界a,坐标系界b的坐标系,则可以编织两个坐标系{φi}iε i和{Ψi}iε i。然后我们证明了一些新的基本性质。随后展示了框架和投影之间的基本联系,提供了编织框架的直觉。最后,一个织造等效的无条件基础,编织Riesz基地被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weaving properties of Hilbert space frames
We will prove some new results in the theory of Weaving Frames. Two frames {φi}iεI and {Ψi}iεI in a Hilbert space H are woven if there are constants 0 <; A ≤ B so that for every subset σ ⊂ I, the family {φi}iεσ ∪ {ψi}iεσc is a frame for H with frame bounds A, B. We begin by introducing the main results in weaving frames. We then prove some new basic properties. This is followed by showing a fundamental connection between frames and projections, providing intuition on woven frames. Finally, a weaving equivalent of an unconditional basis for weaving Riesz bases is considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信