{"title":"手写表示的基因工程","authors":"Alexandre Lemieux, Christian Gagné, M. Parizeau","doi":"10.1109/IWFHR.2002.1030900","DOIUrl":null,"url":null,"abstract":"This paper presents experiments with genetically engineered feature sets for recognition of online handwritten characters. These representations stem from a nondescript decomposition of the character frame into a set of rectangular regions, possibly overlapping each represented by a vector of 7 fuzzy variables. Efficient new feature sets are automatically discovered using genetic programming techniques. Recognition experiments conducted on isolated digits of the Unipen database yield improvements of more than 3% over a previously, manually designed representation where region positions and sizes were fixed.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Genetic engineering of handwriting representations\",\"authors\":\"Alexandre Lemieux, Christian Gagné, M. Parizeau\",\"doi\":\"10.1109/IWFHR.2002.1030900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents experiments with genetically engineered feature sets for recognition of online handwritten characters. These representations stem from a nondescript decomposition of the character frame into a set of rectangular regions, possibly overlapping each represented by a vector of 7 fuzzy variables. Efficient new feature sets are automatically discovered using genetic programming techniques. Recognition experiments conducted on isolated digits of the Unipen database yield improvements of more than 3% over a previously, manually designed representation where region positions and sizes were fixed.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic engineering of handwriting representations
This paper presents experiments with genetically engineered feature sets for recognition of online handwritten characters. These representations stem from a nondescript decomposition of the character frame into a set of rectangular regions, possibly overlapping each represented by a vector of 7 fuzzy variables. Efficient new feature sets are automatically discovered using genetic programming techniques. Recognition experiments conducted on isolated digits of the Unipen database yield improvements of more than 3% over a previously, manually designed representation where region positions and sizes were fixed.