用于运动目标检测和分割的高级统计和自适应阈值技术

L. Christodoulou, T. Kasparis, Oge Marques
{"title":"用于运动目标检测和分割的高级统计和自适应阈值技术","authors":"L. Christodoulou, T. Kasparis, Oge Marques","doi":"10.1109/ICDSP.2011.6004875","DOIUrl":null,"url":null,"abstract":"The current research project proposes advanced statistical and adaptive threshold techniques for video object detection and segmentation. We present new statistical adaptive threshold techniques to show the advantages, and how these algorithms overcome the limitations and the technical challenges for object motion detection. The algorithm utilizes statistical quantities such as mean, standard deviation, and variance to define a new adaptive and automatic threshold based on two-frame and three-frame differencing. The proposed algorithms were compared with classic statistical thresholding methods on a testing video for human motion detection, and the experimental results show the effectiveness of the algorithms. Furthermore this research shows an evaluation and comparison among all statistical and adaptive algorithms and proves the benefits of the proposed algorithm.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Advanced statistical and adaptive threshold techniques for moving object detection and segmentation\",\"authors\":\"L. Christodoulou, T. Kasparis, Oge Marques\",\"doi\":\"10.1109/ICDSP.2011.6004875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current research project proposes advanced statistical and adaptive threshold techniques for video object detection and segmentation. We present new statistical adaptive threshold techniques to show the advantages, and how these algorithms overcome the limitations and the technical challenges for object motion detection. The algorithm utilizes statistical quantities such as mean, standard deviation, and variance to define a new adaptive and automatic threshold based on two-frame and three-frame differencing. The proposed algorithms were compared with classic statistical thresholding methods on a testing video for human motion detection, and the experimental results show the effectiveness of the algorithms. Furthermore this research shows an evaluation and comparison among all statistical and adaptive algorithms and proves the benefits of the proposed algorithm.\",\"PeriodicalId\":360702,\"journal\":{\"name\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2011.6004875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

目前的研究项目提出了用于视频目标检测和分割的高级统计和自适应阈值技术。我们提出了新的统计自适应阈值技术来展示其优势,以及这些算法如何克服目标运动检测的局限性和技术挑战。该算法利用均值、标准差、方差等统计量,在二帧和三帧差分的基础上定义新的自适应自动阈值。在一段人体运动检测测试视频中,将所提算法与经典的统计阈值方法进行了比较,实验结果表明了算法的有效性。在此基础上,对各种统计算法和自适应算法进行了评价和比较,证明了所提算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced statistical and adaptive threshold techniques for moving object detection and segmentation
The current research project proposes advanced statistical and adaptive threshold techniques for video object detection and segmentation. We present new statistical adaptive threshold techniques to show the advantages, and how these algorithms overcome the limitations and the technical challenges for object motion detection. The algorithm utilizes statistical quantities such as mean, standard deviation, and variance to define a new adaptive and automatic threshold based on two-frame and three-frame differencing. The proposed algorithms were compared with classic statistical thresholding methods on a testing video for human motion detection, and the experimental results show the effectiveness of the algorithms. Furthermore this research shows an evaluation and comparison among all statistical and adaptive algorithms and proves the benefits of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信