用于大规模神经网络的小足迹加速器

Tian-ping Chen, Shijin Zhang, Shaoli Liu, Zidong Du, Tao Luo, Yuan Gao, Junjie Liu, Dongsheng Wang, Chengyong Wu, Ninghui Sun, Yunji Chen, O. Temam
{"title":"用于大规模神经网络的小足迹加速器","authors":"Tian-ping Chen, Shijin Zhang, Shaoli Liu, Zidong Du, Tao Luo, Yuan Gao, Junjie Liu, Dongsheng Wang, Chengyong Wu, Ninghui Sun, Yunji Chen, O. Temam","doi":"10.1145/2701417","DOIUrl":null,"url":null,"abstract":"Machine-learning tasks are becoming pervasive in a broad range of domains, and in a broad range of systems (from embedded systems to data centers). At the same time, a small set of machine-learning algorithms (especially Convolutional and Deep Neural Networks, i.e., CNNs and DNNs) are proving to be state-of-the-art across many applications. As architectures evolve toward heterogeneous multicores composed of a mix of cores and accelerators, a machine-learning accelerator can achieve the rare combination of efficiency (due to the small number of target algorithms) and broad application scope. Until now, most machine-learning accelerator designs have been focusing on efficiently implementing the computational part of the algorithms. However, recent state-of-the-art CNNs and DNNs are characterized by their large size. In this study, we design an accelerator for large-scale CNNs and DNNs, with a special emphasis on the impact of memory on accelerator design, performance, and energy. We show that it is possible to design an accelerator with a high throughput, capable of performing 452 GOP/s (key NN operations such as synaptic weight multiplications and neurons outputs additions) in a small footprint of 3.02mm2 and 485mW; compared to a 128-bit 2GHz SIMD processor, the accelerator is 117.87 × faster, and it can reduce the total energy by 21.08 ×. The accelerator characteristics are obtained after layout at 65nm. Such a high throughput in a small footprint can open up the usage of state-of-the-art machine-learning algorithms in a broad set of systems and for a broad set of applications.","PeriodicalId":318554,"journal":{"name":"ACM Transactions on Computer Systems (TOCS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Small-Footprint Accelerator for Large-Scale Neural Networks\",\"authors\":\"Tian-ping Chen, Shijin Zhang, Shaoli Liu, Zidong Du, Tao Luo, Yuan Gao, Junjie Liu, Dongsheng Wang, Chengyong Wu, Ninghui Sun, Yunji Chen, O. Temam\",\"doi\":\"10.1145/2701417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-learning tasks are becoming pervasive in a broad range of domains, and in a broad range of systems (from embedded systems to data centers). At the same time, a small set of machine-learning algorithms (especially Convolutional and Deep Neural Networks, i.e., CNNs and DNNs) are proving to be state-of-the-art across many applications. As architectures evolve toward heterogeneous multicores composed of a mix of cores and accelerators, a machine-learning accelerator can achieve the rare combination of efficiency (due to the small number of target algorithms) and broad application scope. Until now, most machine-learning accelerator designs have been focusing on efficiently implementing the computational part of the algorithms. However, recent state-of-the-art CNNs and DNNs are characterized by their large size. In this study, we design an accelerator for large-scale CNNs and DNNs, with a special emphasis on the impact of memory on accelerator design, performance, and energy. We show that it is possible to design an accelerator with a high throughput, capable of performing 452 GOP/s (key NN operations such as synaptic weight multiplications and neurons outputs additions) in a small footprint of 3.02mm2 and 485mW; compared to a 128-bit 2GHz SIMD processor, the accelerator is 117.87 × faster, and it can reduce the total energy by 21.08 ×. The accelerator characteristics are obtained after layout at 65nm. Such a high throughput in a small footprint can open up the usage of state-of-the-art machine-learning algorithms in a broad set of systems and for a broad set of applications.\",\"PeriodicalId\":318554,\"journal\":{\"name\":\"ACM Transactions on Computer Systems (TOCS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems (TOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2701417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2701417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

机器学习任务在广泛的领域和广泛的系统(从嵌入式系统到数据中心)中变得无处不在。与此同时,一小部分机器学习算法(尤其是卷积和深度神经网络,即cnn和dnn)在许多应用中被证明是最先进的。然而,最近最先进的cnn和dnn的特点是它们的大尺寸。在本研究中,我们设计了一个用于大规模cnn和dnn的加速器,特别强调了内存对加速器设计、性能和能量的影响。我们表明,可以设计一个具有高吞吐量的加速器,能够在3.02mm2和485mW的小占地中执行452 GOP/s(关键的神经网络操作,如突触权重乘法和神经元输出加法);与128位2GHz SIMD处理器相比,加速器速度提高了117.87倍,总能耗降低了21.08倍。在65nm布置后得到了加速器的特性。在很小的空间内实现如此高的吞吐量,可以在广泛的系统和广泛的应用中使用最先进的机器学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Small-Footprint Accelerator for Large-Scale Neural Networks
Machine-learning tasks are becoming pervasive in a broad range of domains, and in a broad range of systems (from embedded systems to data centers). At the same time, a small set of machine-learning algorithms (especially Convolutional and Deep Neural Networks, i.e., CNNs and DNNs) are proving to be state-of-the-art across many applications. As architectures evolve toward heterogeneous multicores composed of a mix of cores and accelerators, a machine-learning accelerator can achieve the rare combination of efficiency (due to the small number of target algorithms) and broad application scope. Until now, most machine-learning accelerator designs have been focusing on efficiently implementing the computational part of the algorithms. However, recent state-of-the-art CNNs and DNNs are characterized by their large size. In this study, we design an accelerator for large-scale CNNs and DNNs, with a special emphasis on the impact of memory on accelerator design, performance, and energy. We show that it is possible to design an accelerator with a high throughput, capable of performing 452 GOP/s (key NN operations such as synaptic weight multiplications and neurons outputs additions) in a small footprint of 3.02mm2 and 485mW; compared to a 128-bit 2GHz SIMD processor, the accelerator is 117.87 × faster, and it can reduce the total energy by 21.08 ×. The accelerator characteristics are obtained after layout at 65nm. Such a high throughput in a small footprint can open up the usage of state-of-the-art machine-learning algorithms in a broad set of systems and for a broad set of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信