基于时尚会议推荐的多样化模特组合

Benedikt D. Schifferer, Jiwei Liu, Sara Rabhi, Gilberto Titericz, Chris Deotte, Gabriel de Souza P. Moreira, Ronay Ak, Kazuki Onodera
{"title":"基于时尚会议推荐的多样化模特组合","authors":"Benedikt D. Schifferer, Jiwei Liu, Sara Rabhi, Gilberto Titericz, Chris Deotte, Gabriel de Souza P. Moreira, Ronay Ak, Kazuki Onodera","doi":"10.1145/3556702.3556821","DOIUrl":null,"url":null,"abstract":"Session-based recommendation is an important task for domains like e-commerce, that suffer from the user cold-start problem due to anonymous browsing and for which users preferences might change considerably over time. The RecSys Challenge 2022, organized by Dressipi, is focused on the session-based recommendation problem for the fashion e-commerce domain. In this paper, the NVIDIA RAPIDS and NVIDIA Merlin teams present their solution that placed 3rd in the challenge. Among the most effective techniques we found sessions augmentation and ensembling a very diverse set of statistical, machine learning and deep learning models. Our recommendation pipeline is composed of three stages, where the first level is focused on candidate generation and the others refine the recommendation ranking for more robust and accurate recommendations.","PeriodicalId":141185,"journal":{"name":"Proceedings of the Recommender Systems Challenge 2022","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Diverse Models Ensemble for Fashion Session-Based Recommendation\",\"authors\":\"Benedikt D. Schifferer, Jiwei Liu, Sara Rabhi, Gilberto Titericz, Chris Deotte, Gabriel de Souza P. Moreira, Ronay Ak, Kazuki Onodera\",\"doi\":\"10.1145/3556702.3556821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Session-based recommendation is an important task for domains like e-commerce, that suffer from the user cold-start problem due to anonymous browsing and for which users preferences might change considerably over time. The RecSys Challenge 2022, organized by Dressipi, is focused on the session-based recommendation problem for the fashion e-commerce domain. In this paper, the NVIDIA RAPIDS and NVIDIA Merlin teams present their solution that placed 3rd in the challenge. Among the most effective techniques we found sessions augmentation and ensembling a very diverse set of statistical, machine learning and deep learning models. Our recommendation pipeline is composed of three stages, where the first level is focused on candidate generation and the others refine the recommendation ranking for more robust and accurate recommendations.\",\"PeriodicalId\":141185,\"journal\":{\"name\":\"Proceedings of the Recommender Systems Challenge 2022\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Recommender Systems Challenge 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556702.3556821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Recommender Systems Challenge 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556702.3556821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于会话的推荐对于电子商务等领域来说是一项重要的任务,这些领域由于匿名浏览而遭受用户冷启动问题,并且用户的偏好可能随着时间的推移而发生很大变化。由Dressipi组织的RecSys挑战2022专注于时尚电子商务领域基于会话的推荐问题。在本文中,NVIDIA RAPIDS和NVIDIA Merlin团队展示了他们在挑战中排名第三的解决方案。在最有效的技术中,我们发现会话增强和整合了一套非常多样化的统计、机器学习和深度学习模型。我们的推荐管道由三个阶段组成,其中第一个阶段专注于候选人生成,其他阶段则细化推荐排名,以获得更健壮和准确的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Diverse Models Ensemble for Fashion Session-Based Recommendation
Session-based recommendation is an important task for domains like e-commerce, that suffer from the user cold-start problem due to anonymous browsing and for which users preferences might change considerably over time. The RecSys Challenge 2022, organized by Dressipi, is focused on the session-based recommendation problem for the fashion e-commerce domain. In this paper, the NVIDIA RAPIDS and NVIDIA Merlin teams present their solution that placed 3rd in the challenge. Among the most effective techniques we found sessions augmentation and ensembling a very diverse set of statistical, machine learning and deep learning models. Our recommendation pipeline is composed of three stages, where the first level is focused on candidate generation and the others refine the recommendation ranking for more robust and accurate recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信