具有状态饱和的连续三维系统稳定性分析

Dongyan Chen, Yanhui Ding, Yujing Shi
{"title":"具有状态饱和的连续三维系统稳定性分析","authors":"Dongyan Chen, Yanhui Ding, Yujing Shi","doi":"10.1109/WCICA.2012.6358078","DOIUrl":null,"url":null,"abstract":"This paper concerns sufficient conditions of globally asymptotical stability at origin for three-dimensional continuous-time linear systems with state saturation. Through the judgment of the existence of equilibrium points distinct from the origin and the existence of steady orbital periodic solutions in the limited area, sufficient conditions for three-dimensional continuous-time linear systems with state saturation to be globally asymptotically stable are given.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis for continuous-time three-dimensional systems with state saturation\",\"authors\":\"Dongyan Chen, Yanhui Ding, Yujing Shi\",\"doi\":\"10.1109/WCICA.2012.6358078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns sufficient conditions of globally asymptotical stability at origin for three-dimensional continuous-time linear systems with state saturation. Through the judgment of the existence of equilibrium points distinct from the origin and the existence of steady orbital periodic solutions in the limited area, sufficient conditions for three-dimensional continuous-time linear systems with state saturation to be globally asymptotically stable are given.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6358078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6358078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究具有状态饱和的三维连续时间线性系统原点全局渐近稳定的充分条件。通过判断非原点平衡点的存在性和有限区域内稳定轨道周期解的存在性,给出了具有状态饱和的三维连续时间线性系统全局渐近稳定的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis for continuous-time three-dimensional systems with state saturation
This paper concerns sufficient conditions of globally asymptotical stability at origin for three-dimensional continuous-time linear systems with state saturation. Through the judgment of the existence of equilibrium points distinct from the origin and the existence of steady orbital periodic solutions in the limited area, sufficient conditions for three-dimensional continuous-time linear systems with state saturation to be globally asymptotically stable are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信