冠层结构遥感的冠层光谱不变量

Y. Knyazikhin, M. Schull, Liang Hu, R. Myneni, P. Carmona
{"title":"冠层结构遥感的冠层光谱不变量","authors":"Y. Knyazikhin, M. Schull, Liang Hu, R. Myneni, P. Carmona","doi":"10.1109/WHISPERS.2009.5289105","DOIUrl":null,"url":null,"abstract":"The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral reflectances become wavelength independent and determine two canopy structure specific variables - the recollision and escape probabilities. The recollision probability (probability that a photon scattered from a phytoelement will interact within the canopy again) is a measure of the multi-level hierarchical structure in a vegetated pixel and can be obtained from hyperspectral data. The escape probability (probability that a scattered photon will escape the vegetation in a given direction) is sensitive to canopy geometrical properties and can be derived from multi-angle spectral data. The escape and recollision probabilities have the potential to separate forest types based on crown shape and the number of hierarchical levels within the landscape. This paper introduces the concept and demonstrates how this approach can be used to monitor forest structural parameters with multi-angle and hyperspectral data.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Canopy spectral invariants for remote sensing of canopy structure\",\"authors\":\"Y. Knyazikhin, M. Schull, Liang Hu, R. Myneni, P. Carmona\",\"doi\":\"10.1109/WHISPERS.2009.5289105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral reflectances become wavelength independent and determine two canopy structure specific variables - the recollision and escape probabilities. The recollision probability (probability that a photon scattered from a phytoelement will interact within the canopy again) is a measure of the multi-level hierarchical structure in a vegetated pixel and can be obtained from hyperspectral data. The escape probability (probability that a scattered photon will escape the vegetation in a given direction) is sensitive to canopy geometrical properties and can be derived from multi-angle spectral data. The escape and recollision probabilities have the potential to separate forest types based on crown shape and the number of hierarchical levels within the landscape. This paper introduces the concept and demonstrates how this approach can be used to monitor forest structural parameters with multi-angle and hyperspectral data.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"313 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

冠层光谱不变量的概念表达了叶片和冠层光谱反射率的简单代数组合变得与波长无关,并决定了两个冠层结构特定变量-回忆和逃逸概率。回忆概率(从植物元素散射的光子再次在冠层内相互作用的概率)是植被像素中多层次层次结构的度量,可以从高光谱数据中获得。逃逸概率(散射光子在给定方向逃逸植被的概率)对冠层几何特性很敏感,可以从多角度光谱数据中得到。逃逸和回忆的概率有可能根据树冠形状和景观中的等级等级数量来区分森林类型。本文介绍了该方法的概念,并演示了该方法如何用于多角度和高光谱数据的森林结构参数监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canopy spectral invariants for remote sensing of canopy structure
The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral reflectances become wavelength independent and determine two canopy structure specific variables - the recollision and escape probabilities. The recollision probability (probability that a photon scattered from a phytoelement will interact within the canopy again) is a measure of the multi-level hierarchical structure in a vegetated pixel and can be obtained from hyperspectral data. The escape probability (probability that a scattered photon will escape the vegetation in a given direction) is sensitive to canopy geometrical properties and can be derived from multi-angle spectral data. The escape and recollision probabilities have the potential to separate forest types based on crown shape and the number of hierarchical levels within the landscape. This paper introduces the concept and demonstrates how this approach can be used to monitor forest structural parameters with multi-angle and hyperspectral data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信