基于隐马尔可夫模型的变结构多模型算法

Hasan İhsan Turhan, Duygu Acar, Nuri Baran Ayana, Kenan Ahiska, M. Demirekler
{"title":"基于隐马尔可夫模型的变结构多模型算法","authors":"Hasan İhsan Turhan, Duygu Acar, Nuri Baran Ayana, Kenan Ahiska, M. Demirekler","doi":"10.1109/SIU49456.2020.9302517","DOIUrl":null,"url":null,"abstract":"In this study, a novel methodology is proposed for more accurate target tracking. The proposed method is basically built on the merging of interacting multiple model (IMM) structures using Hidden Markov Model (HMM). Thus, more models are used than the ordinary IMM algorithm, but more accurate state vectors are estimated by selecting the most likely ones. The proposed algorithm is compared with the variable structure IMM (VSIMM) algorithm, which is the most similar methodology in the literature, in MATLAB environment and the results are presented.","PeriodicalId":312627,"journal":{"name":"2020 28th Signal Processing and Communications Applications Conference (SIU)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hidden Markov Model Based Variable Structured Multiple Model Algorithm\",\"authors\":\"Hasan İhsan Turhan, Duygu Acar, Nuri Baran Ayana, Kenan Ahiska, M. Demirekler\",\"doi\":\"10.1109/SIU49456.2020.9302517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel methodology is proposed for more accurate target tracking. The proposed method is basically built on the merging of interacting multiple model (IMM) structures using Hidden Markov Model (HMM). Thus, more models are used than the ordinary IMM algorithm, but more accurate state vectors are estimated by selecting the most likely ones. The proposed algorithm is compared with the variable structure IMM (VSIMM) algorithm, which is the most similar methodology in the literature, in MATLAB environment and the results are presented.\",\"PeriodicalId\":312627,\"journal\":{\"name\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU49456.2020.9302517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU49456.2020.9302517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的目标跟踪方法。该方法基于隐马尔可夫模型(HMM)对相互作用的多模型(IMM)结构进行合并。因此,与普通的IMM算法相比,使用了更多的模型,但通过选择最可能的状态向量来估计更准确的状态向量。在MATLAB环境下,将所提出的算法与文献中最相似的变结构IMM (VSIMM)算法进行比较,并给出结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Markov Model Based Variable Structured Multiple Model Algorithm
In this study, a novel methodology is proposed for more accurate target tracking. The proposed method is basically built on the merging of interacting multiple model (IMM) structures using Hidden Markov Model (HMM). Thus, more models are used than the ordinary IMM algorithm, but more accurate state vectors are estimated by selecting the most likely ones. The proposed algorithm is compared with the variable structure IMM (VSIMM) algorithm, which is the most similar methodology in the literature, in MATLAB environment and the results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信