不确定条件下传感器网络缺陷识别

T. Furukawa, Jinquan Cheng, S. Lim, Fei Xu, R. Shioya
{"title":"不确定条件下传感器网络缺陷识别","authors":"T. Furukawa, Jinquan Cheng, S. Lim, Fei Xu, R. Shioya","doi":"10.1109/BWCCA.2010.64","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical framework for identification of defects by a sensor network under uncertainties. While location of sensors are not known due to their inspection due to limited knowledge on the structure to be inspected, existing inspection methods do not take uncertainties of sensor locations into account for the localization of defects. The proposed theoretical framework formulates the uncertainties of sensor states stemming from both motion and measurement and allows stochastic identification of defects using recursive Beyesian estimation. Multi-sensor belief fusion further allows a network of sensors to jointly identify defects and improve the accuracy of identification. Parametric studies and application to practical defect identification have shown the validity of the proposed framework.","PeriodicalId":196401,"journal":{"name":"2010 International Conference on Broadband, Wireless Computing, Communication and Applications","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Defect Identification by Sensor Network Under Uncertainties\",\"authors\":\"T. Furukawa, Jinquan Cheng, S. Lim, Fei Xu, R. Shioya\",\"doi\":\"10.1109/BWCCA.2010.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a theoretical framework for identification of defects by a sensor network under uncertainties. While location of sensors are not known due to their inspection due to limited knowledge on the structure to be inspected, existing inspection methods do not take uncertainties of sensor locations into account for the localization of defects. The proposed theoretical framework formulates the uncertainties of sensor states stemming from both motion and measurement and allows stochastic identification of defects using recursive Beyesian estimation. Multi-sensor belief fusion further allows a network of sensors to jointly identify defects and improve the accuracy of identification. Parametric studies and application to practical defect identification have shown the validity of the proposed framework.\",\"PeriodicalId\":196401,\"journal\":{\"name\":\"2010 International Conference on Broadband, Wireless Computing, Communication and Applications\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Broadband, Wireless Computing, Communication and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BWCCA.2010.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Broadband, Wireless Computing, Communication and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2010.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了不确定条件下传感器网络缺陷识别的理论框架。由于对待测结构的了解有限,传感器的位置无法通过检测得到,现有的检测方法没有考虑到传感器位置的不确定性来定位缺陷。提出的理论框架阐述了源于运动和测量的传感器状态的不确定性,并允许使用递归贝叶斯估计随机识别缺陷。多传感器信念融合进一步允许传感器网络共同识别缺陷,提高识别精度。参数化研究和在实际缺陷识别中的应用表明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect Identification by Sensor Network Under Uncertainties
This paper presents a theoretical framework for identification of defects by a sensor network under uncertainties. While location of sensors are not known due to their inspection due to limited knowledge on the structure to be inspected, existing inspection methods do not take uncertainties of sensor locations into account for the localization of defects. The proposed theoretical framework formulates the uncertainties of sensor states stemming from both motion and measurement and allows stochastic identification of defects using recursive Beyesian estimation. Multi-sensor belief fusion further allows a network of sensors to jointly identify defects and improve the accuracy of identification. Parametric studies and application to practical defect identification have shown the validity of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信