多光谱手部生物识别

S. Samoil, K. Lai, S. Yanushkevich
{"title":"多光谱手部生物识别","authors":"S. Samoil, K. Lai, S. Yanushkevich","doi":"10.1109/EST.2014.10","DOIUrl":null,"url":null,"abstract":"This paper reports on a feasibility study of contactless hand biometrics using an RGB-Depth (RGB-D) camera such as the Kinect v2 prototype. The RGB, depth, and near-infrared (near-IR) spectra provide access to information such as palm print, hand shape, finger joint location, and vein patterns. Extraction of the hand is first done using depth data. The frames with the best palm position are selected, and then correlated into the synchronized RGB and near-IR frames for further processing of the related information in each spectra. Using the hand location information the palm can be extracted in the RGB data for use in palm recognition. Recognition of the palm is performed using Principle Component Analysis and K-Nearest-Neighbors for the classification. This multi-spectral analysis is a pre-requisite for hand shape, palm, and vein recognition to be integrated into a mass access control system or a personal computer secure access system.","PeriodicalId":193536,"journal":{"name":"2014 Fifth International Conference on Emerging Security Technologies","volume":"489 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multispectral Hand Biometrics\",\"authors\":\"S. Samoil, K. Lai, S. Yanushkevich\",\"doi\":\"10.1109/EST.2014.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on a feasibility study of contactless hand biometrics using an RGB-Depth (RGB-D) camera such as the Kinect v2 prototype. The RGB, depth, and near-infrared (near-IR) spectra provide access to information such as palm print, hand shape, finger joint location, and vein patterns. Extraction of the hand is first done using depth data. The frames with the best palm position are selected, and then correlated into the synchronized RGB and near-IR frames for further processing of the related information in each spectra. Using the hand location information the palm can be extracted in the RGB data for use in palm recognition. Recognition of the palm is performed using Principle Component Analysis and K-Nearest-Neighbors for the classification. This multi-spectral analysis is a pre-requisite for hand shape, palm, and vein recognition to be integrated into a mass access control system or a personal computer secure access system.\",\"PeriodicalId\":193536,\"journal\":{\"name\":\"2014 Fifth International Conference on Emerging Security Technologies\",\"volume\":\"489 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Fifth International Conference on Emerging Security Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EST.2014.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Emerging Security Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2014.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文报告了使用Kinect v2原型等RGB-Depth (RGB-D)相机进行非接触式手部生物识别的可行性研究。RGB、深度和近红外光谱提供了获取掌纹、手形、手指关节位置和静脉模式等信息的途径。手的提取首先使用深度数据完成。选取手掌位置最优的帧,将其与同步的RGB和近红外帧进行关联,进一步处理各光谱中的相关信息。利用手的位置信息,可以在RGB数据中提取掌纹,用于掌纹识别。使用主成分分析和k近邻分类对手掌进行识别。这种多光谱分析是将手形、手掌和静脉识别集成到大规模访问控制系统或个人计算机安全访问系统中的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multispectral Hand Biometrics
This paper reports on a feasibility study of contactless hand biometrics using an RGB-Depth (RGB-D) camera such as the Kinect v2 prototype. The RGB, depth, and near-infrared (near-IR) spectra provide access to information such as palm print, hand shape, finger joint location, and vein patterns. Extraction of the hand is first done using depth data. The frames with the best palm position are selected, and then correlated into the synchronized RGB and near-IR frames for further processing of the related information in each spectra. Using the hand location information the palm can be extracted in the RGB data for use in palm recognition. Recognition of the palm is performed using Principle Component Analysis and K-Nearest-Neighbors for the classification. This multi-spectral analysis is a pre-requisite for hand shape, palm, and vein recognition to be integrated into a mass access control system or a personal computer secure access system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信