超声成像中的非局部超分辨率

P. Khavari, A. Asif, H. Rivaz
{"title":"超声成像中的非局部超分辨率","authors":"P. Khavari, A. Asif, H. Rivaz","doi":"10.1109/MMSP.2018.8547090","DOIUrl":null,"url":null,"abstract":"The resolution of ultrasound (US) images is limited by physical constraints and hardware restrictions, such as the frequency, width and focal zone of the US beam. Different interpolation methods are often used to increase the sampling rate of ultrasound images. However, interpolation methods generally introduce blur in images. Herein, we present a super resolution (SR) algorithm for reconstruction of the B-mode images using the information from the envelope of radio frequency (RF) data. Our method is based on utilizing repetitive data in the nonlocal neighborhood of samples. The performance of the proposed approach is determined both qualitatively and quantitatively using phantom and in-vivo data.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Non-Local Super Resolution in Ultrasound Imaging\",\"authors\":\"P. Khavari, A. Asif, H. Rivaz\",\"doi\":\"10.1109/MMSP.2018.8547090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The resolution of ultrasound (US) images is limited by physical constraints and hardware restrictions, such as the frequency, width and focal zone of the US beam. Different interpolation methods are often used to increase the sampling rate of ultrasound images. However, interpolation methods generally introduce blur in images. Herein, we present a super resolution (SR) algorithm for reconstruction of the B-mode images using the information from the envelope of radio frequency (RF) data. Our method is based on utilizing repetitive data in the nonlocal neighborhood of samples. The performance of the proposed approach is determined both qualitatively and quantitatively using phantom and in-vivo data.\",\"PeriodicalId\":137522,\"journal\":{\"name\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2018.8547090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

超声(US)图像的分辨率受到物理约束和硬件限制,如US光束的频率、宽度和焦点区域。为了提高超声图像的采样率,通常采用不同的插值方法。然而,插值方法通常会导致图像模糊。在此,我们提出了一种超分辨率(SR)算法,用于利用射频(RF)数据包络的信息重建b模式图像。我们的方法是基于利用样本的非局部邻域的重复数据。所提出的方法的性能是定性和定量地确定使用幻影和体内数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Local Super Resolution in Ultrasound Imaging
The resolution of ultrasound (US) images is limited by physical constraints and hardware restrictions, such as the frequency, width and focal zone of the US beam. Different interpolation methods are often used to increase the sampling rate of ultrasound images. However, interpolation methods generally introduce blur in images. Herein, we present a super resolution (SR) algorithm for reconstruction of the B-mode images using the information from the envelope of radio frequency (RF) data. Our method is based on utilizing repetitive data in the nonlocal neighborhood of samples. The performance of the proposed approach is determined both qualitatively and quantitatively using phantom and in-vivo data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信