基于贝叶斯方法的脑机接口空间光谱滤波优化

Heung-Il Suk, Seong-Whan Lee
{"title":"基于贝叶斯方法的脑机接口空间光谱滤波优化","authors":"Heung-Il Suk, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2013.6506616","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Bayesian frame-work for discriminative feature extraction for motor imagery classification in an EEG-based BCI, in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatio-spectral filter optimization is formulated as the estimation of an unknown posterior pdf that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on two public databases.","PeriodicalId":129758,"journal":{"name":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian approach for spatio-spectral filter optimization in BCI\",\"authors\":\"Heung-Il Suk, Seong-Whan Lee\",\"doi\":\"10.1109/IWW-BCI.2013.6506616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel Bayesian frame-work for discriminative feature extraction for motor imagery classification in an EEG-based BCI, in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatio-spectral filter optimization is formulated as the estimation of an unknown posterior pdf that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on two public databases.\",\"PeriodicalId\":129758,\"journal\":{\"name\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2013.6506616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2013.6506616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的贝叶斯框架,用于基于脑电图的脑机接口中运动图像分类的判别特征提取,该框架通过概率和信息论的方法优化了类判别频带和相应的空间滤波器。在我们的框架中,同步空间-频谱滤波器优化问题被表述为未知后验pdf的估计,该后验pdf表示在某种状态下可以识别预定义心理任务的单次脑电的概率。我们通过对两个公共数据库的结果分析和成功验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian approach for spatio-spectral filter optimization in BCI
In this paper, we propose a novel Bayesian frame-work for discriminative feature extraction for motor imagery classification in an EEG-based BCI, in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatio-spectral filter optimization is formulated as the estimation of an unknown posterior pdf that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on two public databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信