{"title":"基于贝叶斯方法的脑机接口空间光谱滤波优化","authors":"Heung-Il Suk, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2013.6506616","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Bayesian frame-work for discriminative feature extraction for motor imagery classification in an EEG-based BCI, in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatio-spectral filter optimization is formulated as the estimation of an unknown posterior pdf that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on two public databases.","PeriodicalId":129758,"journal":{"name":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian approach for spatio-spectral filter optimization in BCI\",\"authors\":\"Heung-Il Suk, Seong-Whan Lee\",\"doi\":\"10.1109/IWW-BCI.2013.6506616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel Bayesian frame-work for discriminative feature extraction for motor imagery classification in an EEG-based BCI, in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatio-spectral filter optimization is formulated as the estimation of an unknown posterior pdf that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on two public databases.\",\"PeriodicalId\":129758,\"journal\":{\"name\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2013.6506616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2013.6506616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Bayesian approach for spatio-spectral filter optimization in BCI
In this paper, we propose a novel Bayesian frame-work for discriminative feature extraction for motor imagery classification in an EEG-based BCI, in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatio-spectral filter optimization is formulated as the estimation of an unknown posterior pdf that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on two public databases.