投资组合优化与蒙特卡罗模拟

M. E. H. Pedersen
{"title":"投资组合优化与蒙特卡罗模拟","authors":"M. E. H. Pedersen","doi":"10.2139/SSRN.2438121","DOIUrl":null,"url":null,"abstract":"This paper uses Monte Carlo simulation of a simple equity growth model with resampling of historical financial data to estimate the probability distributions of the future equity, earnings and payouts of companies. The simulated equity is then used with the historical P/Book distribution to estimate the probability distributions of the future stock prices. This is done for Coca-Cola, Wal-Mart, McDonald’s and the S&P 500 stock-market index. The return distributions are then used to construct optimal portfolios using the “Markowitz” (mean-variance) and “Kelly” (geometric mean) methods. It is shown that variance is an incorrect measure of investment risk so that mean-variance optimal portfolios do not minimize risk as commonly believed. This criticism holds for return distributions in general. Kelly portfolios are correctly optimized for investment risk and long-term gains, but the portfolios are often concentrated in few assets and are therefore sensitive to estimation errors in the return distributions.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Portfolio Optimization and Monte Carlo Simulation\",\"authors\":\"M. E. H. Pedersen\",\"doi\":\"10.2139/SSRN.2438121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses Monte Carlo simulation of a simple equity growth model with resampling of historical financial data to estimate the probability distributions of the future equity, earnings and payouts of companies. The simulated equity is then used with the historical P/Book distribution to estimate the probability distributions of the future stock prices. This is done for Coca-Cola, Wal-Mart, McDonald’s and the S&P 500 stock-market index. The return distributions are then used to construct optimal portfolios using the “Markowitz” (mean-variance) and “Kelly” (geometric mean) methods. It is shown that variance is an incorrect measure of investment risk so that mean-variance optimal portfolios do not minimize risk as commonly believed. This criticism holds for return distributions in general. Kelly portfolios are correctly optimized for investment risk and long-term gains, but the portfolios are often concentrated in few assets and are therefore sensitive to estimation errors in the return distributions.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2438121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2438121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文使用蒙特卡罗模拟一个简单的股权增长模型,对历史财务数据进行重采样,以估计公司未来股权,收益和支出的概率分布。然后将模拟权益与历史P/Book分布一起使用,以估计未来股票价格的概率分布。可口可乐(Coca-Cola)、沃尔玛(Wal-Mart)、麦当劳(McDonald 's)和标准普尔500指数(S&P 500 stock market index)就是这样做的。然后使用“Markowitz”(均值-方差)和“Kelly”(几何平均)方法将收益分布用于构建最优投资组合。结果表明,方差是一种不正确的投资风险度量,因此均值方差最优投资组合不会像通常认为的那样使风险最小化。这种批评一般适用于回报分布。凯利投资组合对投资风险和长期收益进行了正确的优化,但投资组合往往集中在少数资产上,因此对收益分布的估计误差很敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio Optimization and Monte Carlo Simulation
This paper uses Monte Carlo simulation of a simple equity growth model with resampling of historical financial data to estimate the probability distributions of the future equity, earnings and payouts of companies. The simulated equity is then used with the historical P/Book distribution to estimate the probability distributions of the future stock prices. This is done for Coca-Cola, Wal-Mart, McDonald’s and the S&P 500 stock-market index. The return distributions are then used to construct optimal portfolios using the “Markowitz” (mean-variance) and “Kelly” (geometric mean) methods. It is shown that variance is an incorrect measure of investment risk so that mean-variance optimal portfolios do not minimize risk as commonly believed. This criticism holds for return distributions in general. Kelly portfolios are correctly optimized for investment risk and long-term gains, but the portfolios are often concentrated in few assets and are therefore sensitive to estimation errors in the return distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信