Schubert变种中一般环面轨道闭包的poincar多项式

Eunjeong Lee, M. Masuda, Seonjeong Park, Jongbaek Song
{"title":"Schubert变种中一般环面轨道闭包的poincar<e:1>多项式","authors":"Eunjeong Lee, M. Masuda, Seonjeong Park, Jongbaek Song","doi":"10.1090/conm/772/15490","DOIUrl":null,"url":null,"abstract":"The closure of a generic torus orbit in the flag variety \n\n \n \n G\n \n /\n \n B\n \n G/B\n \n\n of type \n\n \n A\n A\n \n\n is known to be a permutohedral variety, and its Poincaré polynomial agrees with the Eulerian polynomial. In this paper, we study the Poincaré polynomial of a generic torus orbit closure in a Schubert variety in \n\n \n \n G\n \n /\n \n B\n \n G/B\n \n\n. When the generic torus orbit closure in a Schubert variety is smooth, its Poincaré polynomial is known to agree with a certain generalization of the Eulerian polynomial. We extend this result to an arbitrary generic torus orbit closure which is not necessarily smooth.","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Poincaré polynomials of generic torus orbit closures in Schubert varieties\",\"authors\":\"Eunjeong Lee, M. Masuda, Seonjeong Park, Jongbaek Song\",\"doi\":\"10.1090/conm/772/15490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The closure of a generic torus orbit in the flag variety \\n\\n \\n \\n G\\n \\n /\\n \\n B\\n \\n G/B\\n \\n\\n of type \\n\\n \\n A\\n A\\n \\n\\n is known to be a permutohedral variety, and its Poincaré polynomial agrees with the Eulerian polynomial. In this paper, we study the Poincaré polynomial of a generic torus orbit closure in a Schubert variety in \\n\\n \\n \\n G\\n \\n /\\n \\n B\\n \\n G/B\\n \\n\\n. When the generic torus orbit closure in a Schubert variety is smooth, its Poincaré polynomial is known to agree with a certain generalization of the Eulerian polynomial. We extend this result to an arbitrary generic torus orbit closure which is not necessarily smooth.\",\"PeriodicalId\":296603,\"journal\":{\"name\":\"Topology, Geometry, and Dynamics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology, Geometry, and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/772/15490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

已知a型旗型G/B G/B中一般环面轨道的闭包为复面体型,其庞加莱格多项式符合欧拉多项式。本文研究了G/B G/B中舒伯特变中一般环面轨道闭包的poincar多项式。当舒伯特变元中的一般环面轨道闭包是光滑的时,已知其庞卡罗莱多项式符合欧拉多项式的某种推广。我们将这个结果推广到一个不一定光滑的任意一般环面轨道闭包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poincaré polynomials of generic torus orbit closures in Schubert varieties
The closure of a generic torus orbit in the flag variety G / B G/B of type  A A is known to be a permutohedral variety, and its Poincaré polynomial agrees with the Eulerian polynomial. In this paper, we study the Poincaré polynomial of a generic torus orbit closure in a Schubert variety in  G / B G/B . When the generic torus orbit closure in a Schubert variety is smooth, its Poincaré polynomial is known to agree with a certain generalization of the Eulerian polynomial. We extend this result to an arbitrary generic torus orbit closure which is not necessarily smooth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信