{"title":"与平台无关的超宽带测距和定位系统的挑战","authors":"Laura Flueratoru, E. Lohan, D. Niculescu","doi":"10.1145/3556564.3558238","DOIUrl":null,"url":null,"abstract":"The Ultra-Wideband (UWB) technology has grown in popularity to the point in which there are numerous UWB transceivers on the market that use different center frequencies, bandwidths, or hardware architectures. At the same time, efforts are made to reduce the ranging and localization errors of UWB systems. Until now, not much attention has been dedicated to the cross-platform compatibility of these methods. In this paper, we discuss for the first time the challenges in obtaining platform-independent UWB ranging and localization systems. We derive our observations from a measurement campaign conducted with UWB devices from three different developers. We evaluate the differences in the ranging errors and channel impulse responses of the devices and show how they can affect ranging mitigation methods customized for one device only. Finally, we discuss possible solutions towards platform-independent UWB localization systems.","PeriodicalId":140152,"journal":{"name":"Proceedings of the 16th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges in platform-independent UWB ranging and localization systems\",\"authors\":\"Laura Flueratoru, E. Lohan, D. Niculescu\",\"doi\":\"10.1145/3556564.3558238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ultra-Wideband (UWB) technology has grown in popularity to the point in which there are numerous UWB transceivers on the market that use different center frequencies, bandwidths, or hardware architectures. At the same time, efforts are made to reduce the ranging and localization errors of UWB systems. Until now, not much attention has been dedicated to the cross-platform compatibility of these methods. In this paper, we discuss for the first time the challenges in obtaining platform-independent UWB ranging and localization systems. We derive our observations from a measurement campaign conducted with UWB devices from three different developers. We evaluate the differences in the ranging errors and channel impulse responses of the devices and show how they can affect ranging mitigation methods customized for one device only. Finally, we discuss possible solutions towards platform-independent UWB localization systems.\",\"PeriodicalId\":140152,\"journal\":{\"name\":\"Proceedings of the 16th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556564.3558238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556564.3558238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges in platform-independent UWB ranging and localization systems
The Ultra-Wideband (UWB) technology has grown in popularity to the point in which there are numerous UWB transceivers on the market that use different center frequencies, bandwidths, or hardware architectures. At the same time, efforts are made to reduce the ranging and localization errors of UWB systems. Until now, not much attention has been dedicated to the cross-platform compatibility of these methods. In this paper, we discuss for the first time the challenges in obtaining platform-independent UWB ranging and localization systems. We derive our observations from a measurement campaign conducted with UWB devices from three different developers. We evaluate the differences in the ranging errors and channel impulse responses of the devices and show how they can affect ranging mitigation methods customized for one device only. Finally, we discuss possible solutions towards platform-independent UWB localization systems.