用于自顶向下gpu加速应用程序性能分析的工具

K. Zhou, Mark W. Krentel, J. Mellor-Crummey
{"title":"用于自顶向下gpu加速应用程序性能分析的工具","authors":"K. Zhou, Mark W. Krentel, J. Mellor-Crummey","doi":"10.1145/3392717.3392752","DOIUrl":null,"url":null,"abstract":"This paper describes extensions to Rice University's HPCToolkit performance tools to support measurement and analysis of GPU-accelerated applications. To help developers understand the performance of accelerated applications as a whole, HPCToolkit's measurement and analysis tools attribute metrics to calling contexts that span both CPUs and GPUs. To measure GPU-accelerated applications efficiently, HPCToolkit employs a novel wait-free data structure to coordinate monitoring and attribution of GPU performance metrics. To help developers understand the performance of complex GPU code generated from high-level programming models, HPCToolkit's hpcprof constructs sophisticated approximations of call path profiles for GPU computations. To support fine-grain analysis and tuning, HPCToolkit attributes GPU performance metrics to source lines and loops. Also, HPCToolkit uses GPU PC samples to derive and attribute a collection of useful GPU performance metrics. We illustrate HPCToolkit's new capabilities for analyzing GPU- accelerated applications with three case studies.","PeriodicalId":346687,"journal":{"name":"Proceedings of the 34th ACM International Conference on Supercomputing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Tools for top-down performance analysis of GPU-accelerated applications\",\"authors\":\"K. Zhou, Mark W. Krentel, J. Mellor-Crummey\",\"doi\":\"10.1145/3392717.3392752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes extensions to Rice University's HPCToolkit performance tools to support measurement and analysis of GPU-accelerated applications. To help developers understand the performance of accelerated applications as a whole, HPCToolkit's measurement and analysis tools attribute metrics to calling contexts that span both CPUs and GPUs. To measure GPU-accelerated applications efficiently, HPCToolkit employs a novel wait-free data structure to coordinate monitoring and attribution of GPU performance metrics. To help developers understand the performance of complex GPU code generated from high-level programming models, HPCToolkit's hpcprof constructs sophisticated approximations of call path profiles for GPU computations. To support fine-grain analysis and tuning, HPCToolkit attributes GPU performance metrics to source lines and loops. Also, HPCToolkit uses GPU PC samples to derive and attribute a collection of useful GPU performance metrics. We illustrate HPCToolkit's new capabilities for analyzing GPU- accelerated applications with three case studies.\",\"PeriodicalId\":346687,\"journal\":{\"name\":\"Proceedings of the 34th ACM International Conference on Supercomputing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3392717.3392752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3392717.3392752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文描述了Rice University的HPCToolkit性能工具的扩展,以支持gpu加速应用程序的测量和分析。为了帮助开发人员从整体上理解加速应用程序的性能,HPCToolkit的度量和分析工具将度量属性赋予了跨cpu和gpu的调用上下文。为了有效地测量GPU加速应用程序,HPCToolkit采用了一种新颖的无等待数据结构来协调GPU性能指标的监控和归属。为了帮助开发人员理解由高级编程模型生成的复杂GPU代码的性能,HPCToolkit的hpcprof为GPU计算构建了调用路径配置文件的复杂近似。为了支持细粒度分析和调优,HPCToolkit将GPU性能指标归因于源行和循环。此外,HPCToolkit使用GPU PC示例来派生和属性一组有用的GPU性能指标。我们通过三个案例研究来说明HPCToolkit分析GPU加速应用程序的新功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tools for top-down performance analysis of GPU-accelerated applications
This paper describes extensions to Rice University's HPCToolkit performance tools to support measurement and analysis of GPU-accelerated applications. To help developers understand the performance of accelerated applications as a whole, HPCToolkit's measurement and analysis tools attribute metrics to calling contexts that span both CPUs and GPUs. To measure GPU-accelerated applications efficiently, HPCToolkit employs a novel wait-free data structure to coordinate monitoring and attribution of GPU performance metrics. To help developers understand the performance of complex GPU code generated from high-level programming models, HPCToolkit's hpcprof constructs sophisticated approximations of call path profiles for GPU computations. To support fine-grain analysis and tuning, HPCToolkit attributes GPU performance metrics to source lines and loops. Also, HPCToolkit uses GPU PC samples to derive and attribute a collection of useful GPU performance metrics. We illustrate HPCToolkit's new capabilities for analyzing GPU- accelerated applications with three case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信