用于协稀疏向量恢复的迭代协稀疏投影算法

R. Giryes, Sangnam Nam, R. Gribonval, M. Davies
{"title":"用于协稀疏向量恢复的迭代协稀疏投影算法","authors":"R. Giryes, Sangnam Nam, R. Gribonval, M. Davies","doi":"10.5281/ZENODO.42621","DOIUrl":null,"url":null,"abstract":"Recently, a cosparse analysis model was introduced as an alternative to the standard sparse synthesis model. This model was shown to yield uniqueness guarantees in the context of linear inverse problems, and a new reconstruction algorithm was provided, showing improved performance compared to analysis ℓ1 optimization. In this work we pursue the parallel between the two models and propose a new family of algorithms mimicking the family of Iterative Hard Thresholding algorithms, but for the cosparse analysis model. We provide performance guarantees for algorithms from this family under a Restricted Isometry Property adapted to the context of analysis models, and we demonstrate the performance of the algorithms on simulations.","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Iterative cosparse projection algorithms for the recovery of cosparse vectors\",\"authors\":\"R. Giryes, Sangnam Nam, R. Gribonval, M. Davies\",\"doi\":\"10.5281/ZENODO.42621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a cosparse analysis model was introduced as an alternative to the standard sparse synthesis model. This model was shown to yield uniqueness guarantees in the context of linear inverse problems, and a new reconstruction algorithm was provided, showing improved performance compared to analysis ℓ1 optimization. In this work we pursue the parallel between the two models and propose a new family of algorithms mimicking the family of Iterative Hard Thresholding algorithms, but for the cosparse analysis model. We provide performance guarantees for algorithms from this family under a Restricted Isometry Property adapted to the context of analysis models, and we demonstrate the performance of the algorithms on simulations.\",\"PeriodicalId\":331889,\"journal\":{\"name\":\"2011 19th European Signal Processing Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 19th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.42621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

近年来,作为标准稀疏综合模型的替代方案,引入了一种协稀疏分析模型。该模型在线性逆问题中具有唯一性保证,并给出了一种新的重构算法,与分析1优化相比,该算法具有更好的性能。在这项工作中,我们追求两种模型之间的并行性,并提出了一种新的算法族,模仿迭代硬阈值算法族,但针对co稀疏分析模型。我们在适应分析模型上下文的受限等距属性下为该家族的算法提供了性能保证,并在仿真上证明了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative cosparse projection algorithms for the recovery of cosparse vectors
Recently, a cosparse analysis model was introduced as an alternative to the standard sparse synthesis model. This model was shown to yield uniqueness guarantees in the context of linear inverse problems, and a new reconstruction algorithm was provided, showing improved performance compared to analysis ℓ1 optimization. In this work we pursue the parallel between the two models and propose a new family of algorithms mimicking the family of Iterative Hard Thresholding algorithms, but for the cosparse analysis model. We provide performance guarantees for algorithms from this family under a Restricted Isometry Property adapted to the context of analysis models, and we demonstrate the performance of the algorithms on simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信