整数上的低维函数优化

D. Dadush, A. L'eonard, Lars Rohwedder, José Verschae
{"title":"整数上的低维函数优化","authors":"D. Dadush, A. L'eonard, Lars Rohwedder, José Verschae","doi":"10.48550/arXiv.2303.02474","DOIUrl":null,"url":null,"abstract":"We consider box-constrained integer programs with objective $g(Wx) + c^T x$, where $g$ is a\"complicated\"function with an $m$ dimensional domain. Here we assume we have $n \\gg m$ variables and that $W \\in \\mathbb Z^{m \\times n}$ is an integer matrix with coefficients of absolute value at most $\\Delta$. We design an algorithm for this problem using only the mild assumption that the objective can be optimized efficiently when all but $m$ variables are fixed, yielding a running time of $n^m(m \\Delta)^{O(m^2)}$. Moreover, we can avoid the term $n^m$ in several special cases, in particular when $c = 0$. Our approach can be applied in a variety of settings, generalizing several recent results. An important application are convex objectives of low domain dimension, where we imply a recent result by Hunkenschr\\\"oder et al. [SIOPT'22] for the 0-1-hypercube and sharp or separable convex $g$, assuming $W$ is given explicitly. By avoiding the direct use of proximity results, which only holds when $g$ is separable or sharp, we match their running time and generalize it for arbitrary convex functions. In the case where the objective is only accessible by an oracle and $W$ is unknown, we further show that their proximity framework can be implemented in $n (m \\Delta)^{O(m^2)}$-time instead of $n (m \\Delta)^{O(m^3)}$. Lastly, we extend the result by Eisenbrand and Weismantel [SODA'17, TALG'20] for integer programs with few constraints to a mixed-integer linear program setting where integer variables appear in only a small number of different constraints.","PeriodicalId":421894,"journal":{"name":"Conference on Integer Programming and Combinatorial Optimization","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Low Dimensional Functions over the Integers\",\"authors\":\"D. Dadush, A. L'eonard, Lars Rohwedder, José Verschae\",\"doi\":\"10.48550/arXiv.2303.02474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider box-constrained integer programs with objective $g(Wx) + c^T x$, where $g$ is a\\\"complicated\\\"function with an $m$ dimensional domain. Here we assume we have $n \\\\gg m$ variables and that $W \\\\in \\\\mathbb Z^{m \\\\times n}$ is an integer matrix with coefficients of absolute value at most $\\\\Delta$. We design an algorithm for this problem using only the mild assumption that the objective can be optimized efficiently when all but $m$ variables are fixed, yielding a running time of $n^m(m \\\\Delta)^{O(m^2)}$. Moreover, we can avoid the term $n^m$ in several special cases, in particular when $c = 0$. Our approach can be applied in a variety of settings, generalizing several recent results. An important application are convex objectives of low domain dimension, where we imply a recent result by Hunkenschr\\\\\\\"oder et al. [SIOPT'22] for the 0-1-hypercube and sharp or separable convex $g$, assuming $W$ is given explicitly. By avoiding the direct use of proximity results, which only holds when $g$ is separable or sharp, we match their running time and generalize it for arbitrary convex functions. In the case where the objective is only accessible by an oracle and $W$ is unknown, we further show that their proximity framework can be implemented in $n (m \\\\Delta)^{O(m^2)}$-time instead of $n (m \\\\Delta)^{O(m^3)}$. Lastly, we extend the result by Eisenbrand and Weismantel [SODA'17, TALG'20] for integer programs with few constraints to a mixed-integer linear program setting where integer variables appear in only a small number of different constraints.\",\"PeriodicalId\":421894,\"journal\":{\"name\":\"Conference on Integer Programming and Combinatorial Optimization\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Integer Programming and Combinatorial Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.02474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Integer Programming and Combinatorial Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.02474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑目标为$g(Wx) + c^T x$的盒约束整数规划,其中$g$是一个具有$m$维域的“复杂”函数。这里我们假设我们有$n \gg \m $变量,并且$W \in \mathbb Z^{m \乘以n}$是一个整数矩阵,其系数的绝对值不超过$\Delta$。我们为这个问题设计了一个算法,只使用温和的假设,即当除了$m$变量之外的所有变量都是固定的时,目标可以有效地优化,从而产生$n^m(m \Delta)^{O(m^2)}$的运行时间。此外,在一些特殊情况下,特别是当c = 0时,我们可以避免使用n^m项。我们的方法可以应用于各种环境,概括了最近的几个结果。一个重要的应用是低域维数的凸目标,在这里我们引用了Hunkenschr\ ' oder等人[SIOPT'22]关于0-1超立方体和尖锐或可分离凸$g$的最新结果,假设$W$是明确给定的。通过避免直接使用邻近结果,只有当$g$是可分离的或尖锐的,我们匹配它们的运行时间,并将其推广到任意凸函数。在目标只能由oracle访问且$W$未知的情况下,我们进一步证明了它们的邻近框架可以在$n (m \Delta)^{O(m^2)}$时间内实现,而不是$n (m \Delta)^{O(m^3)}$时间内实现。最后,我们将Eisenbrand和Weismantel [SODA'17, TALG'20]对约束较少的整数规划的结果推广到一个混合整数线性规划设置,其中整数变量只出现在少数不同的约束中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Low Dimensional Functions over the Integers
We consider box-constrained integer programs with objective $g(Wx) + c^T x$, where $g$ is a"complicated"function with an $m$ dimensional domain. Here we assume we have $n \gg m$ variables and that $W \in \mathbb Z^{m \times n}$ is an integer matrix with coefficients of absolute value at most $\Delta$. We design an algorithm for this problem using only the mild assumption that the objective can be optimized efficiently when all but $m$ variables are fixed, yielding a running time of $n^m(m \Delta)^{O(m^2)}$. Moreover, we can avoid the term $n^m$ in several special cases, in particular when $c = 0$. Our approach can be applied in a variety of settings, generalizing several recent results. An important application are convex objectives of low domain dimension, where we imply a recent result by Hunkenschr\"oder et al. [SIOPT'22] for the 0-1-hypercube and sharp or separable convex $g$, assuming $W$ is given explicitly. By avoiding the direct use of proximity results, which only holds when $g$ is separable or sharp, we match their running time and generalize it for arbitrary convex functions. In the case where the objective is only accessible by an oracle and $W$ is unknown, we further show that their proximity framework can be implemented in $n (m \Delta)^{O(m^2)}$-time instead of $n (m \Delta)^{O(m^3)}$. Lastly, we extend the result by Eisenbrand and Weismantel [SODA'17, TALG'20] for integer programs with few constraints to a mixed-integer linear program setting where integer variables appear in only a small number of different constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信