{"title":"小型电子商务中推荐系统的离线与在线评价","authors":"Ladislav Peška, P. Vojtás","doi":"10.1145/3372923.3404781","DOIUrl":null,"url":null,"abstract":"In this paper, we present our work towards comparing on-line and off-line evaluation metrics in the context of small e-commerce recommender systems. Recommending on small e-commerce enterprises is rather challenging due to the lower volume of interactions and low user loyalty, rarely extending beyond a single session. On the other hand, we usually have to deal with lower volumes of objects, which are easier to discover by users through various browsing/searching GUIs. The main goal of this paper is to determine applicability of off-line evaluation metrics in learning true usability of recommender systems (evaluated on-line in A/B testing). In total 800 variants of recommenders were evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based, novelty and diversity evaluation. The off-line results were afterwards compared with on-line evaluation of 12 selected recommender variants and based on the results, we tried to learn and utilize an off-line to on-line results prediction model. Off-line results shown a great variance in performance w.r.t. different metrics with the Pareto front covering 64% of the approaches. Furthermore, we observed that on-line results are considerably affected by the seniority of users. On-line metrics correlates positively with ranking-based metrics (AUC, MRR, nDCG) for novice users, while too high values of novelty had a negative impact on the on-line results for them.","PeriodicalId":389616,"journal":{"name":"Proceedings of the 31st ACM Conference on Hypertext and Social Media","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce\",\"authors\":\"Ladislav Peška, P. Vojtás\",\"doi\":\"10.1145/3372923.3404781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our work towards comparing on-line and off-line evaluation metrics in the context of small e-commerce recommender systems. Recommending on small e-commerce enterprises is rather challenging due to the lower volume of interactions and low user loyalty, rarely extending beyond a single session. On the other hand, we usually have to deal with lower volumes of objects, which are easier to discover by users through various browsing/searching GUIs. The main goal of this paper is to determine applicability of off-line evaluation metrics in learning true usability of recommender systems (evaluated on-line in A/B testing). In total 800 variants of recommenders were evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based, novelty and diversity evaluation. The off-line results were afterwards compared with on-line evaluation of 12 selected recommender variants and based on the results, we tried to learn and utilize an off-line to on-line results prediction model. Off-line results shown a great variance in performance w.r.t. different metrics with the Pareto front covering 64% of the approaches. Furthermore, we observed that on-line results are considerably affected by the seniority of users. On-line metrics correlates positively with ranking-based metrics (AUC, MRR, nDCG) for novice users, while too high values of novelty had a negative impact on the on-line results for them.\",\"PeriodicalId\":389616,\"journal\":{\"name\":\"Proceedings of the 31st ACM Conference on Hypertext and Social Media\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372923.3404781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372923.3404781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce
In this paper, we present our work towards comparing on-line and off-line evaluation metrics in the context of small e-commerce recommender systems. Recommending on small e-commerce enterprises is rather challenging due to the lower volume of interactions and low user loyalty, rarely extending beyond a single session. On the other hand, we usually have to deal with lower volumes of objects, which are easier to discover by users through various browsing/searching GUIs. The main goal of this paper is to determine applicability of off-line evaluation metrics in learning true usability of recommender systems (evaluated on-line in A/B testing). In total 800 variants of recommenders were evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based, novelty and diversity evaluation. The off-line results were afterwards compared with on-line evaluation of 12 selected recommender variants and based on the results, we tried to learn and utilize an off-line to on-line results prediction model. Off-line results shown a great variance in performance w.r.t. different metrics with the Pareto front covering 64% of the approaches. Furthermore, we observed that on-line results are considerably affected by the seniority of users. On-line metrics correlates positively with ranking-based metrics (AUC, MRR, nDCG) for novice users, while too high values of novelty had a negative impact on the on-line results for them.