特邀演讲:基于草图的异常检测、识别和性能评估

P. Abry, P. Borgnat, G. Dewaele
{"title":"特邀演讲:基于草图的异常检测、识别和性能评估","authors":"P. Abry, P. Borgnat, G. Dewaele","doi":"10.1109/SAINT-W.2007.55","DOIUrl":null,"url":null,"abstract":"An anomaly detection procedure is defined and its statistical performance are carefully quantified. It is based on a non Gaussian modeling of the marginal distributions of random projections (sketches) of traffic aggregated jointly at different levels (multiresolution). To evaluate false negative vs. false positive in a controlled, reproducible and documented framework, we apply the detection procedure to traffic time-series from our self-made anomaly database. It is obtained by performing DDoS-type attacks, using real-world attack tools, over a real operational network. Also, we illustrate that combining sketches enables us to identify the target IP destination address and faulty packets hence opening the track to attack mitigation","PeriodicalId":254195,"journal":{"name":"2007 International Symposium on Applications and the Internet Workshops","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Invited Talk: Sketch Based Anomaly Detection, Identification and Performance Evaluation\",\"authors\":\"P. Abry, P. Borgnat, G. Dewaele\",\"doi\":\"10.1109/SAINT-W.2007.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An anomaly detection procedure is defined and its statistical performance are carefully quantified. It is based on a non Gaussian modeling of the marginal distributions of random projections (sketches) of traffic aggregated jointly at different levels (multiresolution). To evaluate false negative vs. false positive in a controlled, reproducible and documented framework, we apply the detection procedure to traffic time-series from our self-made anomaly database. It is obtained by performing DDoS-type attacks, using real-world attack tools, over a real operational network. Also, we illustrate that combining sketches enables us to identify the target IP destination address and faulty packets hence opening the track to attack mitigation\",\"PeriodicalId\":254195,\"journal\":{\"name\":\"2007 International Symposium on Applications and the Internet Workshops\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Applications and the Internet Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAINT-W.2007.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Applications and the Internet Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAINT-W.2007.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

定义了异常检测程序,并对其统计性能进行了仔细的量化。它是基于在不同级别(多分辨率)联合聚集的交通随机投影(草图)的边缘分布的非高斯建模。为了在一个可控的、可重复的、有文件记录的框架中评估假阴性和假阳性,我们将检测程序应用于我们自制的异常数据库中的交通时间序列。它是通过在真实的操作网络上使用真实的攻击工具执行ddos类型攻击而获得的。此外,我们还说明了组合草图使我们能够识别目标IP目的地地址和错误数据包,从而打开攻击缓解轨道
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invited Talk: Sketch Based Anomaly Detection, Identification and Performance Evaluation
An anomaly detection procedure is defined and its statistical performance are carefully quantified. It is based on a non Gaussian modeling of the marginal distributions of random projections (sketches) of traffic aggregated jointly at different levels (multiresolution). To evaluate false negative vs. false positive in a controlled, reproducible and documented framework, we apply the detection procedure to traffic time-series from our self-made anomaly database. It is obtained by performing DDoS-type attacks, using real-world attack tools, over a real operational network. Also, we illustrate that combining sketches enables us to identify the target IP destination address and faulty packets hence opening the track to attack mitigation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信