基于深度强化学习的在线配电系统网络安全保护

T. Bailey, Jay Johnson, Drew Levin
{"title":"基于深度强化学习的在线配电系统网络安全保护","authors":"T. Bailey, Jay Johnson, Drew Levin","doi":"10.1109/SmartGridComm51999.2021.9631991","DOIUrl":null,"url":null,"abstract":"The sophistication and regularity of power system cybersecurity attacks has been growing in the last decade, leading researchers to investigate new innovative, cyber-resilient tools to help grid operators defend their networks and power systems. One promising approach is to apply recent advances in deep reinforcement learning (DRL) to aid grid operators in making real-time changes to the power system equipment to counteract malicious actions. While multiple transmission studies have been conducted in the past, in this work we investigate the possibility of defending distribution power systems using a DRL agent who has control of a collection of utility-owned distributed energy resources (DER). A game board using a modified version of the IEEE 13-bus model was simulated using OpenDSS to train the DRL agent and compare its performance to a random agent, a greedy agent, and human players. Both the DRL agent and the greedy approach performed well, suggesting a greedy approach can be appropriate for computationally tractable system configurations and a DRL agent is a viable path forward for systems of increased complexity. This work paves the way to create multi-player distribution system control games which could be designed to defend the power grid under a sophisticated cyber-attack.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Reinforcement Learning For Online Distribution Power System Cybersecurity Protection\",\"authors\":\"T. Bailey, Jay Johnson, Drew Levin\",\"doi\":\"10.1109/SmartGridComm51999.2021.9631991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sophistication and regularity of power system cybersecurity attacks has been growing in the last decade, leading researchers to investigate new innovative, cyber-resilient tools to help grid operators defend their networks and power systems. One promising approach is to apply recent advances in deep reinforcement learning (DRL) to aid grid operators in making real-time changes to the power system equipment to counteract malicious actions. While multiple transmission studies have been conducted in the past, in this work we investigate the possibility of defending distribution power systems using a DRL agent who has control of a collection of utility-owned distributed energy resources (DER). A game board using a modified version of the IEEE 13-bus model was simulated using OpenDSS to train the DRL agent and compare its performance to a random agent, a greedy agent, and human players. Both the DRL agent and the greedy approach performed well, suggesting a greedy approach can be appropriate for computationally tractable system configurations and a DRL agent is a viable path forward for systems of increased complexity. This work paves the way to create multi-player distribution system control games which could be designed to defend the power grid under a sophisticated cyber-attack.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9631991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9631991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去十年中,电力系统网络安全攻击的复杂性和规律性一直在增长,这促使研究人员研究新的创新、网络弹性工具,以帮助电网运营商保护其网络和电力系统。一种有希望的方法是应用深度强化学习(DRL)的最新进展,帮助电网运营商实时更改电力系统设备,以抵消恶意行为。虽然过去已经进行了多次传输研究,但在本工作中,我们研究了使用控制公用事业拥有的分布式能源(DER)集合的DRL代理来保护配电系统的可能性。采用改进的IEEE 13总线模型,利用OpenDSS对游戏棋盘进行仿真,训练DRL智能体,并将其性能与随机智能体、贪婪智能体和人类玩家进行比较。DRL代理和贪心方法都表现良好,这表明贪心方法适用于计算可处理的系统配置,而DRL代理是增加复杂性的系统的可行路径。这项工作为创建多人配电系统控制游戏铺平了道路,该游戏可以设计用于在复杂的网络攻击下保护电网。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning For Online Distribution Power System Cybersecurity Protection
The sophistication and regularity of power system cybersecurity attacks has been growing in the last decade, leading researchers to investigate new innovative, cyber-resilient tools to help grid operators defend their networks and power systems. One promising approach is to apply recent advances in deep reinforcement learning (DRL) to aid grid operators in making real-time changes to the power system equipment to counteract malicious actions. While multiple transmission studies have been conducted in the past, in this work we investigate the possibility of defending distribution power systems using a DRL agent who has control of a collection of utility-owned distributed energy resources (DER). A game board using a modified version of the IEEE 13-bus model was simulated using OpenDSS to train the DRL agent and compare its performance to a random agent, a greedy agent, and human players. Both the DRL agent and the greedy approach performed well, suggesting a greedy approach can be appropriate for computationally tractable system configurations and a DRL agent is a viable path forward for systems of increased complexity. This work paves the way to create multi-player distribution system control games which could be designed to defend the power grid under a sophisticated cyber-attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信