gpu上的动态内存管理器慢吗?:调查和基准

Martin Winter, Mathias Parger, Daniel Mlakar, M. Steinberger
{"title":"gpu上的动态内存管理器慢吗?:调查和基准","authors":"Martin Winter, Mathias Parger, Daniel Mlakar, M. Steinberger","doi":"10.1145/3437801.3441612","DOIUrl":null,"url":null,"abstract":"Dynamic memory management on GPUs is generally understood to be a challenging topic. On current GPUs, hundreds of thousands of threads might concurrently allocate new memory or free previously allocated memory. This leads to problems with thread contention, synchronization overhead and fragmentation. Various approaches have been proposed in the last ten years and we set out to evaluate them on a level playing field on modern hardware to answer the question, if dynamic memory managers are as slow as commonly thought of. In this survey paper, we provide a consistent framework to evaluate all publicly available memory managers in a large set of scenarios. We summarize each approach and thoroughly evaluate allocation performance (thread-based as well as warp-based), and look at performance scaling, fragmentation and real-world performance considering a synthetic workload as well as updating dynamic graphs. We discuss the strengths and weaknesses of each approach and provide guidelines for the respective best usage scenario. We provide a unified interface to integrate any of the tested memory managers into an application and switch between them for benchmarking purposes. Given our results, we can dispel some of the dread associated with dynamic memory managers on the GPU.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Are dynamic memory managers on GPUs slow?: a survey and benchmarks\",\"authors\":\"Martin Winter, Mathias Parger, Daniel Mlakar, M. Steinberger\",\"doi\":\"10.1145/3437801.3441612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic memory management on GPUs is generally understood to be a challenging topic. On current GPUs, hundreds of thousands of threads might concurrently allocate new memory or free previously allocated memory. This leads to problems with thread contention, synchronization overhead and fragmentation. Various approaches have been proposed in the last ten years and we set out to evaluate them on a level playing field on modern hardware to answer the question, if dynamic memory managers are as slow as commonly thought of. In this survey paper, we provide a consistent framework to evaluate all publicly available memory managers in a large set of scenarios. We summarize each approach and thoroughly evaluate allocation performance (thread-based as well as warp-based), and look at performance scaling, fragmentation and real-world performance considering a synthetic workload as well as updating dynamic graphs. We discuss the strengths and weaknesses of each approach and provide guidelines for the respective best usage scenario. We provide a unified interface to integrate any of the tested memory managers into an application and switch between them for benchmarking purposes. Given our results, we can dispel some of the dread associated with dynamic memory managers on the GPU.\",\"PeriodicalId\":124852,\"journal\":{\"name\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437801.3441612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

gpu上的动态内存管理通常被认为是一个具有挑战性的主题。在当前的gpu上,成千上万的线程可能并发地分配新的内存或释放以前分配的内存。这会导致线程争用、同步开销和碎片等问题。在过去的十年中,已经提出了各种各样的方法,我们开始在现代硬件的公平竞争环境中对它们进行评估,以回答这个问题,动态内存管理器是否像通常认为的那样慢。在这篇调查报告中,我们提供了一个一致的框架来评估大量场景中所有公开可用的内存管理器。我们总结了每种方法并全面评估了分配性能(基于线程和基于warp),并在考虑合成工作负载以及更新动态图的情况下查看性能缩放、碎片和实际性能。我们将讨论每种方法的优缺点,并为各自的最佳使用场景提供指导方针。我们提供了一个统一的接口,可以将任何经过测试的内存管理器集成到应用程序中,并在它们之间进行切换以进行基准测试。鉴于我们的结果,我们可以消除与GPU上的动态内存管理器相关的一些恐惧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are dynamic memory managers on GPUs slow?: a survey and benchmarks
Dynamic memory management on GPUs is generally understood to be a challenging topic. On current GPUs, hundreds of thousands of threads might concurrently allocate new memory or free previously allocated memory. This leads to problems with thread contention, synchronization overhead and fragmentation. Various approaches have been proposed in the last ten years and we set out to evaluate them on a level playing field on modern hardware to answer the question, if dynamic memory managers are as slow as commonly thought of. In this survey paper, we provide a consistent framework to evaluate all publicly available memory managers in a large set of scenarios. We summarize each approach and thoroughly evaluate allocation performance (thread-based as well as warp-based), and look at performance scaling, fragmentation and real-world performance considering a synthetic workload as well as updating dynamic graphs. We discuss the strengths and weaknesses of each approach and provide guidelines for the respective best usage scenario. We provide a unified interface to integrate any of the tested memory managers into an application and switch between them for benchmarking purposes. Given our results, we can dispel some of the dread associated with dynamic memory managers on the GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信