矩形波导中基于手性超材料平面层的横向插片的电磁特性研究

I. Buchnev, O. Osipov
{"title":"矩形波导中基于手性超材料平面层的横向插片的电磁特性研究","authors":"I. Buchnev, O. Osipov","doi":"10.18469/1810-3189.2023.26.1.93-105","DOIUrl":null,"url":null,"abstract":"The paper considers the solution of the problem of diffraction of the fundamental wave of a rectangular waveguide H10 on a planar transverse insert based on a chiral metamaterial created on the thin-wire conducting helices. To describe the chiral layer, a particular mathematical model is constructed that takes into account the properties of heterogeneity and dispersion of the permittivity and the chirality parameter of the artificial media. The well-known in physics model of Maxwell Garnett was used to take into account the heterogeneity property. To take into account the permittivity dispersion the DrudeLorentz formula was applied and for the chirality parameter was used the Condon formula. The problem of diffraction of the rectangular waveguide main wave on a planar layer of a chiral metamaterial was solved by the partial regions method and was reduced to a system of linear algebraic equations for unknown reflection and transmission coefficients. It is shown that in the presence of a transverse chiral layer in the waveguide structure, a wave of the H01 type cross-polarized with respect to the main one arises. An analysis of the frequency dependences of the moduli of the reflection and transmission coefficients of the fundamental H10 and cross-polarized H01 showed that in some narrow frequency intervals in the single-mode gap, situations arise when the fundamental wave type is replaced from H10 to H01 near resonant frequencies. The transmission line under consideration can find application in the creation of frequency selective filters and polarization converters in the microwave range.","PeriodicalId":129469,"journal":{"name":"Physics of Wave Processes and Radio Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the electromagnetic properties of a transverse insert based on a planar layer of a chiral metamaterial in a rectangular waveguide\",\"authors\":\"I. Buchnev, O. Osipov\",\"doi\":\"10.18469/1810-3189.2023.26.1.93-105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the solution of the problem of diffraction of the fundamental wave of a rectangular waveguide H10 on a planar transverse insert based on a chiral metamaterial created on the thin-wire conducting helices. To describe the chiral layer, a particular mathematical model is constructed that takes into account the properties of heterogeneity and dispersion of the permittivity and the chirality parameter of the artificial media. The well-known in physics model of Maxwell Garnett was used to take into account the heterogeneity property. To take into account the permittivity dispersion the DrudeLorentz formula was applied and for the chirality parameter was used the Condon formula. The problem of diffraction of the rectangular waveguide main wave on a planar layer of a chiral metamaterial was solved by the partial regions method and was reduced to a system of linear algebraic equations for unknown reflection and transmission coefficients. It is shown that in the presence of a transverse chiral layer in the waveguide structure, a wave of the H01 type cross-polarized with respect to the main one arises. An analysis of the frequency dependences of the moduli of the reflection and transmission coefficients of the fundamental H10 and cross-polarized H01 showed that in some narrow frequency intervals in the single-mode gap, situations arise when the fundamental wave type is replaced from H10 to H01 near resonant frequencies. The transmission line under consideration can find application in the creation of frequency selective filters and polarization converters in the microwave range.\",\"PeriodicalId\":129469,\"journal\":{\"name\":\"Physics of Wave Processes and Radio Systems\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Wave Processes and Radio Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18469/1810-3189.2023.26.1.93-105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Processes and Radio Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/1810-3189.2023.26.1.93-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于细丝导电螺旋上形成的手性超材料的矩形波导H10基波在平面横插片上的衍射问题。为了描述手性层,建立了一个特殊的数学模型,该模型考虑了人工介质的介电常数和手性参数的非均质性和色散性。采用了物理学中著名的麦克斯韦·加内特模型来考虑非均质性。考虑介电常数色散时采用DrudeLorentz公式,手性参数采用Condon公式。用部分区域法求解了矩形波导主波在手性超材料平面层上的衍射问题,并将其简化为反射系数和透射系数未知的线性代数方程组。结果表明,当波导结构中存在横向手性层时,会产生相对于主波的H01型交叉极化波。对基波H10和交叉极化H01的反射系数和透射系数模量的频率依赖性分析表明,在单模间隙的一些较窄的频率间隔内,在谐振频率附近出现基波类型由H10替换为H01的情况。所考虑的传输线可以在微波范围内的频率选择滤波器和极化变换器的创建中找到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the electromagnetic properties of a transverse insert based on a planar layer of a chiral metamaterial in a rectangular waveguide
The paper considers the solution of the problem of diffraction of the fundamental wave of a rectangular waveguide H10 on a planar transverse insert based on a chiral metamaterial created on the thin-wire conducting helices. To describe the chiral layer, a particular mathematical model is constructed that takes into account the properties of heterogeneity and dispersion of the permittivity and the chirality parameter of the artificial media. The well-known in physics model of Maxwell Garnett was used to take into account the heterogeneity property. To take into account the permittivity dispersion the DrudeLorentz formula was applied and for the chirality parameter was used the Condon formula. The problem of diffraction of the rectangular waveguide main wave on a planar layer of a chiral metamaterial was solved by the partial regions method and was reduced to a system of linear algebraic equations for unknown reflection and transmission coefficients. It is shown that in the presence of a transverse chiral layer in the waveguide structure, a wave of the H01 type cross-polarized with respect to the main one arises. An analysis of the frequency dependences of the moduli of the reflection and transmission coefficients of the fundamental H10 and cross-polarized H01 showed that in some narrow frequency intervals in the single-mode gap, situations arise when the fundamental wave type is replaced from H10 to H01 near resonant frequencies. The transmission line under consideration can find application in the creation of frequency selective filters and polarization converters in the microwave range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信