Kaushal Darokar, P. Reddy, J. Furlich, D. Robinette, M. Shahbakhti, M. Ravichandran, Jeffrey Doering
{"title":"用于传动系统抽动控制的汽车侧隙位置估计器","authors":"Kaushal Darokar, P. Reddy, J. Furlich, D. Robinette, M. Shahbakhti, M. Ravichandran, Jeffrey Doering","doi":"10.1109/CCTA41146.2020.9206324","DOIUrl":null,"url":null,"abstract":"Backlash position information is important in designing control systems for the purpose of reducing clunk and shuffle in automotive drivelines. Typically, this position information is used by the control system to determine when the driveline has entered or exited the backlash and also to regulate the speed of backlash traversal. To this end, we develop here a Kalman filter-based estimator for the backlash position, utilizing readily available speed measurements from the vehicle CAN bus. The estimator is designed to switch between two modes, since the drivetrain physics is different while traversing the lash and outside of the lash. We validate the estimator using experimentally collected vehicle test data, and observe that the backlash position estimates are accurate to within 20 ms of the test vehicle's actual backlash position. Furthermore, we verify the robustness of the system to CAN jitter in the speed measurements.","PeriodicalId":241335,"journal":{"name":"2020 IEEE Conference on Control Technology and Applications (CCTA)","volume":"329 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automotive backlash position estimator for driveline jerk control\",\"authors\":\"Kaushal Darokar, P. Reddy, J. Furlich, D. Robinette, M. Shahbakhti, M. Ravichandran, Jeffrey Doering\",\"doi\":\"10.1109/CCTA41146.2020.9206324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backlash position information is important in designing control systems for the purpose of reducing clunk and shuffle in automotive drivelines. Typically, this position information is used by the control system to determine when the driveline has entered or exited the backlash and also to regulate the speed of backlash traversal. To this end, we develop here a Kalman filter-based estimator for the backlash position, utilizing readily available speed measurements from the vehicle CAN bus. The estimator is designed to switch between two modes, since the drivetrain physics is different while traversing the lash and outside of the lash. We validate the estimator using experimentally collected vehicle test data, and observe that the backlash position estimates are accurate to within 20 ms of the test vehicle's actual backlash position. Furthermore, we verify the robustness of the system to CAN jitter in the speed measurements.\",\"PeriodicalId\":241335,\"journal\":{\"name\":\"2020 IEEE Conference on Control Technology and Applications (CCTA)\",\"volume\":\"329 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Conference on Control Technology and Applications (CCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCTA41146.2020.9206324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA41146.2020.9206324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automotive backlash position estimator for driveline jerk control
Backlash position information is important in designing control systems for the purpose of reducing clunk and shuffle in automotive drivelines. Typically, this position information is used by the control system to determine when the driveline has entered or exited the backlash and also to regulate the speed of backlash traversal. To this end, we develop here a Kalman filter-based estimator for the backlash position, utilizing readily available speed measurements from the vehicle CAN bus. The estimator is designed to switch between two modes, since the drivetrain physics is different while traversing the lash and outside of the lash. We validate the estimator using experimentally collected vehicle test data, and observe that the backlash position estimates are accurate to within 20 ms of the test vehicle's actual backlash position. Furthermore, we verify the robustness of the system to CAN jitter in the speed measurements.