结合文本检索和链接分析技术改进文献馆藏的知识发现

Wei Jin, R. Srihari, H. H. Ho, Xin Wu
{"title":"结合文本检索和链接分析技术改进文献馆藏的知识发现","authors":"Wei Jin, R. Srihari, H. H. Ho, Xin Wu","doi":"10.1109/ICDM.2007.62","DOIUrl":null,"url":null,"abstract":"In this paper, we present Concept Chain Queries (CCQ), a special case of text mining in document collections focusing on detecting links between two topics across text documents. We interpret such a query as finding the most meaningful evidence trails across documents that connect these two topics. We propose to use link-analysis techniques over the extracted features provided by Information Extraction Engine for finding new knowledge. A graphical text representation and mining model is proposed which combines information retrieval, association mining and link analysis techniques. We present experiments on different datasets that demonstrate the effectiveness of our algorithm. Specifically, the algorithm generates ranked concept chains and evidence trails where the key terms representing significant relationships between topics are ranked high.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Improving Knowledge Discovery in Document Collections through Combining Text Retrieval and Link Analysis Techniques\",\"authors\":\"Wei Jin, R. Srihari, H. H. Ho, Xin Wu\",\"doi\":\"10.1109/ICDM.2007.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present Concept Chain Queries (CCQ), a special case of text mining in document collections focusing on detecting links between two topics across text documents. We interpret such a query as finding the most meaningful evidence trails across documents that connect these two topics. We propose to use link-analysis techniques over the extracted features provided by Information Extraction Engine for finding new knowledge. A graphical text representation and mining model is proposed which combines information retrieval, association mining and link analysis techniques. We present experiments on different datasets that demonstrate the effectiveness of our algorithm. Specifically, the algorithm generates ranked concept chains and evidence trails where the key terms representing significant relationships between topics are ranked high.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

在本文中,我们提出了概念链查询(CCQ),这是文档集合中文本挖掘的一个特殊案例,专注于检测文本文档中两个主题之间的链接。我们将这样的查询解释为在连接这两个主题的文档中找到最有意义的证据踪迹。我们建议在信息提取引擎提供的提取特征上使用链接分析技术来寻找新的知识。提出了一种结合信息检索、关联挖掘和链接分析技术的图形文本表示和挖掘模型。我们在不同的数据集上进行了实验,证明了我们算法的有效性。具体来说,该算法生成排名的概念链和证据线索,其中代表主题之间重要关系的关键术语排名较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Knowledge Discovery in Document Collections through Combining Text Retrieval and Link Analysis Techniques
In this paper, we present Concept Chain Queries (CCQ), a special case of text mining in document collections focusing on detecting links between two topics across text documents. We interpret such a query as finding the most meaningful evidence trails across documents that connect these two topics. We propose to use link-analysis techniques over the extracted features provided by Information Extraction Engine for finding new knowledge. A graphical text representation and mining model is proposed which combines information retrieval, association mining and link analysis techniques. We present experiments on different datasets that demonstrate the effectiveness of our algorithm. Specifically, the algorithm generates ranked concept chains and evidence trails where the key terms representing significant relationships between topics are ranked high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信