基于权致细化的隐变量贝叶斯网络结构学习

Web-KR '14 Pub Date : 2014-11-03 DOI:10.1145/2663792.2663798
Chao He, Kun Yue, Hao Wu, Weiyi Liu
{"title":"基于权致细化的隐变量贝叶斯网络结构学习","authors":"Chao He, Kun Yue, Hao Wu, Weiyi Liu","doi":"10.1145/2663792.2663798","DOIUrl":null,"url":null,"abstract":"Bayesian network (BN) with latent variables (LVs) provides a concise and straightforward framework for representing and inferring uncertain knowledge with unobservable variables or with regard to missing data. To learn the BN with LVs consistently with the realistic situations, we propose the information theory based concept of existence weight and incorporate it into the clique-based learning method. In line with the challenges when learning BN with LVs, we focus on determining the number of LVs, and determining the relationships between LVs and the observed variables. First, we define the existence weight and propose the algorithms for finding the ε-cliques from the BN without LVs learned from data. Then, we introduce the LV to each ε-clique and adjust the BN structure with LVs. Further, we adjust the value of parameter ε to determine the number of LVs. Experimental results show the feasibility of our method.","PeriodicalId":289794,"journal":{"name":"Web-KR '14","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Structure Learning of Bayesian Network with Latent Variables by Weight-Induced Refinement\",\"authors\":\"Chao He, Kun Yue, Hao Wu, Weiyi Liu\",\"doi\":\"10.1145/2663792.2663798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian network (BN) with latent variables (LVs) provides a concise and straightforward framework for representing and inferring uncertain knowledge with unobservable variables or with regard to missing data. To learn the BN with LVs consistently with the realistic situations, we propose the information theory based concept of existence weight and incorporate it into the clique-based learning method. In line with the challenges when learning BN with LVs, we focus on determining the number of LVs, and determining the relationships between LVs and the observed variables. First, we define the existence weight and propose the algorithms for finding the ε-cliques from the BN without LVs learned from data. Then, we introduce the LV to each ε-clique and adjust the BN structure with LVs. Further, we adjust the value of parameter ε to determine the number of LVs. Experimental results show the feasibility of our method.\",\"PeriodicalId\":289794,\"journal\":{\"name\":\"Web-KR '14\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web-KR '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663792.2663798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web-KR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663792.2663798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

具有潜在变量的贝叶斯网络(BN)为表示和推断具有不可观察变量或关于缺失数据的不确定知识提供了一个简洁明了的框架。为了使LVs的BN学习符合实际情况,我们提出了基于信息论的存在权概念,并将其融入到基于团的学习方法中。针对使用lv学习BN的挑战,我们着重于确定lv的数量,以及lv与观察变量之间的关系。首先,我们定义了存在权值,并提出了在不需要从数据中学习到lv的情况下从BN中寻找ε-团的算法。然后,我们将LV引入到每个ε-团中,并用LV调整BN结构。进一步,我们调整参数ε的值来确定lv的数量。实验结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure Learning of Bayesian Network with Latent Variables by Weight-Induced Refinement
Bayesian network (BN) with latent variables (LVs) provides a concise and straightforward framework for representing and inferring uncertain knowledge with unobservable variables or with regard to missing data. To learn the BN with LVs consistently with the realistic situations, we propose the information theory based concept of existence weight and incorporate it into the clique-based learning method. In line with the challenges when learning BN with LVs, we focus on determining the number of LVs, and determining the relationships between LVs and the observed variables. First, we define the existence weight and propose the algorithms for finding the ε-cliques from the BN without LVs learned from data. Then, we introduce the LV to each ε-clique and adjust the BN structure with LVs. Further, we adjust the value of parameter ε to determine the number of LVs. Experimental results show the feasibility of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信