异步采样有利于无线传感器网络

Jing Wang, Yonghe Liu, Sajal K. Das
{"title":"异步采样有利于无线传感器网络","authors":"Jing Wang, Yonghe Liu, Sajal K. Das","doi":"10.1109/INFOCOM.2008.288","DOIUrl":null,"url":null,"abstract":"Intensive research has focused on redundance reduction in wireless sensor networks among sensory data due to the spatial and temporal correlation embedded therein. In this paper, we propose a novel approach termed asynchronous sampling that complements existing study. The key idea of asynchronous sampling is to spread the sampling times of the sensor nodes over the time line instead of performing them in a synchronous manner. Compared with existing strategies, asynchronous sampling introduces another dimension for optimization, without additional computation or communication overhead on sensor nodes. Theoretically, we show that asynchronous sampling benefits sensor networks through increased entropy of the sensory data or reduced reconstruction distortion. Furthermore, we formulate the optimal asynchronous sampling problem for determining the time shifts among the nodes. A heuristic solution, termed O-ASYN, is presented that uses local optimum search to approximate the global optimal solution. Simulation results based on simulated data and real experimental data both demonstrate the entropy increases.","PeriodicalId":447520,"journal":{"name":"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Asynchronous Sampling Benefits Wireless Sensor Networks\",\"authors\":\"Jing Wang, Yonghe Liu, Sajal K. Das\",\"doi\":\"10.1109/INFOCOM.2008.288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intensive research has focused on redundance reduction in wireless sensor networks among sensory data due to the spatial and temporal correlation embedded therein. In this paper, we propose a novel approach termed asynchronous sampling that complements existing study. The key idea of asynchronous sampling is to spread the sampling times of the sensor nodes over the time line instead of performing them in a synchronous manner. Compared with existing strategies, asynchronous sampling introduces another dimension for optimization, without additional computation or communication overhead on sensor nodes. Theoretically, we show that asynchronous sampling benefits sensor networks through increased entropy of the sensory data or reduced reconstruction distortion. Furthermore, we formulate the optimal asynchronous sampling problem for determining the time shifts among the nodes. A heuristic solution, termed O-ASYN, is presented that uses local optimum search to approximate the global optimal solution. Simulation results based on simulated data and real experimental data both demonstrate the entropy increases.\",\"PeriodicalId\":447520,\"journal\":{\"name\":\"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2008.288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2008.288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于无线传感器网络中嵌入的空间和时间相关性,人们对无线传感器网络中传感器数据的冗余减少进行了深入的研究。在本文中,我们提出了一种新的方法,称为异步采样,以补充现有的研究。异步采样的关键思想是将传感器节点的采样时间分散到时间线上,而不是以同步的方式进行采样。与现有的策略相比,异步采样引入了另一个维度的优化,没有额外的计算和传感器节点的通信开销。从理论上讲,我们表明异步采样通过增加感官数据的熵或减少重建失真对传感器网络有利。此外,我们还提出了确定节点间时移的最优异步采样问题。提出了一种启发式解,称为o - asynn,它使用局部最优搜索来逼近全局最优解。基于仿真数据和实际实验数据的仿真结果都表明,熵增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchronous Sampling Benefits Wireless Sensor Networks
Intensive research has focused on redundance reduction in wireless sensor networks among sensory data due to the spatial and temporal correlation embedded therein. In this paper, we propose a novel approach termed asynchronous sampling that complements existing study. The key idea of asynchronous sampling is to spread the sampling times of the sensor nodes over the time line instead of performing them in a synchronous manner. Compared with existing strategies, asynchronous sampling introduces another dimension for optimization, without additional computation or communication overhead on sensor nodes. Theoretically, we show that asynchronous sampling benefits sensor networks through increased entropy of the sensory data or reduced reconstruction distortion. Furthermore, we formulate the optimal asynchronous sampling problem for determining the time shifts among the nodes. A heuristic solution, termed O-ASYN, is presented that uses local optimum search to approximate the global optimal solution. Simulation results based on simulated data and real experimental data both demonstrate the entropy increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信