多腔OMVPE反应器中III-V型化合物半导体的流动调制生长

B. L. Pitts, D. Emerson, M. Matragrano, K. L. Whittingham, B.P. Butterfield, J. Shealy
{"title":"多腔OMVPE反应器中III-V型化合物半导体的流动调制生长","authors":"B. L. Pitts, D. Emerson, M. Matragrano, K. L. Whittingham, B.P. Butterfield, J. Shealy","doi":"10.1109/CORNEL.1993.303077","DOIUrl":null,"url":null,"abstract":"The flow modulation growth of high purity InP and GaAs based III-V compound semiconductors is demonstrated using a multichamber organometallic vapor phase epitaxy (OMVPE) apparatus. Flow modulation is performed by rotating substrates through spatially separated group III and group V rich zones without valve switching. This system has multiwafer capability and excellent compositional and thickness uniformity. In addition, using the appropriate flow conditions, phosphide and arsenide based superlattice structures can also be produced without the use of mechanical valve switching. High purity InP and GaAs have been realized, yielding low temperature (77 K) mobilities exceeding 110,000 and 115,000 cm/sup 2V s, respectively. Excellent transport and optical properties were also observed for GaInP-GaAs and GaInAs-InP structures. The multichamber reactor is a useful tool for both research and manufacturing of optoelectronic and high speed compound semiconductor devices.<<ETX>>","PeriodicalId":129440,"journal":{"name":"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flow modulation growth of III-V compound semiconductors using a multichamber OMVPE reactor\",\"authors\":\"B. L. Pitts, D. Emerson, M. Matragrano, K. L. Whittingham, B.P. Butterfield, J. Shealy\",\"doi\":\"10.1109/CORNEL.1993.303077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flow modulation growth of high purity InP and GaAs based III-V compound semiconductors is demonstrated using a multichamber organometallic vapor phase epitaxy (OMVPE) apparatus. Flow modulation is performed by rotating substrates through spatially separated group III and group V rich zones without valve switching. This system has multiwafer capability and excellent compositional and thickness uniformity. In addition, using the appropriate flow conditions, phosphide and arsenide based superlattice structures can also be produced without the use of mechanical valve switching. High purity InP and GaAs have been realized, yielding low temperature (77 K) mobilities exceeding 110,000 and 115,000 cm/sup 2V s, respectively. Excellent transport and optical properties were also observed for GaInP-GaAs and GaInAs-InP structures. The multichamber reactor is a useful tool for both research and manufacturing of optoelectronic and high speed compound semiconductor devices.<<ETX>>\",\"PeriodicalId\":129440,\"journal\":{\"name\":\"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CORNEL.1993.303077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CORNEL.1993.303077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用多腔有机金属气相外延(OMVPE)装置,研究了高纯度InP和GaAs基III-V化合物半导体的流动调制生长。流量调制是通过旋转基片通过空间分离的III族和V族富区来实现的,没有阀门开关。该系统具有多晶片性能、良好的成分和厚度均匀性。此外,在适当的流动条件下,也可以在不使用机械阀门开关的情况下产生磷化物和砷化物基超晶格结构。已经实现了高纯度的InP和GaAs,低温(77 K)迁移率分别超过110,000和115,000 cm/sup 2V s。GaInP-GaAs和GaInAs-InP结构也具有优异的输运和光学性质。多腔室反应器是研究和制造光电和高速化合物半导体器件的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow modulation growth of III-V compound semiconductors using a multichamber OMVPE reactor
The flow modulation growth of high purity InP and GaAs based III-V compound semiconductors is demonstrated using a multichamber organometallic vapor phase epitaxy (OMVPE) apparatus. Flow modulation is performed by rotating substrates through spatially separated group III and group V rich zones without valve switching. This system has multiwafer capability and excellent compositional and thickness uniformity. In addition, using the appropriate flow conditions, phosphide and arsenide based superlattice structures can also be produced without the use of mechanical valve switching. High purity InP and GaAs have been realized, yielding low temperature (77 K) mobilities exceeding 110,000 and 115,000 cm/sup 2V s, respectively. Excellent transport and optical properties were also observed for GaInP-GaAs and GaInAs-InP structures. The multichamber reactor is a useful tool for both research and manufacturing of optoelectronic and high speed compound semiconductor devices.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信