利用深度人工神经网络研究激活函数对分类精度的影响

A. Serwa
{"title":"利用深度人工神经网络研究激活函数对分类精度的影响","authors":"A. Serwa","doi":"10.4172/2469-4134.1000203","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANN) is widely used in remote sensing classification. Optimizing ANN still an enigmatic field of research especially in remote sensing. This research work is a trial to discover the ANN activation function to be used perfectly in classification (landcover mapping). The first step is preparing the reference map then assume a selected activation function and receive the ANN fuzzified output. The last step is comparing the output with the reference to reach the accuracy assessment. The research result is fixing the activation function that is perfect to be used in remote sensing classification. A real multi-spectral Landsat 7 satellite images were used and was classified (using ANN) and the accuracy of the classification was assessed with different activation functions. The sigmoid function was found to be the best activation function.","PeriodicalId":427440,"journal":{"name":"Journal of Remote Sensing & GIS","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Studying the Effect of Activation Function on Classification Accuracy Using Deep Artificial Neural Networks\",\"authors\":\"A. Serwa\",\"doi\":\"10.4172/2469-4134.1000203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Neural Networks (ANN) is widely used in remote sensing classification. Optimizing ANN still an enigmatic field of research especially in remote sensing. This research work is a trial to discover the ANN activation function to be used perfectly in classification (landcover mapping). The first step is preparing the reference map then assume a selected activation function and receive the ANN fuzzified output. The last step is comparing the output with the reference to reach the accuracy assessment. The research result is fixing the activation function that is perfect to be used in remote sensing classification. A real multi-spectral Landsat 7 satellite images were used and was classified (using ANN) and the accuracy of the classification was assessed with different activation functions. The sigmoid function was found to be the best activation function.\",\"PeriodicalId\":427440,\"journal\":{\"name\":\"Journal of Remote Sensing & GIS\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Remote Sensing & GIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2469-4134.1000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Remote Sensing & GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-4134.1000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

人工神经网络在遥感分类中得到了广泛的应用。优化人工神经网络仍然是一个神秘的研究领域,特别是在遥感领域。本研究工作是探索神经网络激活函数在分类(土地覆盖制图)中的完美应用的一次尝试。第一步是准备参考映射,然后假设一个选定的激活函数并接收人工神经网络模糊化的输出。最后一步是将输出与参考文献进行比较,以达到准确性评估。研究结果确定了较为完善的用于遥感分类的激活函数。利用一幅真实的多光谱Landsat 7卫星图像进行分类(采用人工神经网络),并利用不同的激活函数对分类的精度进行了评估。结果表明,s型函数是最佳的激活函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studying the Effect of Activation Function on Classification Accuracy Using Deep Artificial Neural Networks
Artificial Neural Networks (ANN) is widely used in remote sensing classification. Optimizing ANN still an enigmatic field of research especially in remote sensing. This research work is a trial to discover the ANN activation function to be used perfectly in classification (landcover mapping). The first step is preparing the reference map then assume a selected activation function and receive the ANN fuzzified output. The last step is comparing the output with the reference to reach the accuracy assessment. The research result is fixing the activation function that is perfect to be used in remote sensing classification. A real multi-spectral Landsat 7 satellite images were used and was classified (using ANN) and the accuracy of the classification was assessed with different activation functions. The sigmoid function was found to be the best activation function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信