L. Sarmenta, Marten van Dijk, C. W. O'Donnell, Jonathan Rhodes, S. Devadas
{"title":"使用TPM的虚拟单调计数器和计数限制对象,而不需要可信的操作系统","authors":"L. Sarmenta, Marten van Dijk, C. W. O'Donnell, Jonathan Rhodes, S. Devadas","doi":"10.1145/1179474.1179485","DOIUrl":null,"url":null,"abstract":"A trusted monotonic counter is a valuable primitive that enables a wide variety of highly scalable offline and decentralized applications that would otherwise be prone to replay attacks, including offline payment, e-wallets, virtual trusted storage, and digital rights management (DRM). In this paper, we show how one can implement a very large number of virtual monotonic counters on an untrusted machine with a Trusted Platform Module (TPM) or similar device, without relying on a trusted OS. We first present a log-based scheme that can be implemented with the current version of the TPM (1.2) and used in certain applications. We then show how the addition of a few simple features to the TPM makes it possible to implement a hash-tree-based scheme that not only offers improved performance and scalability compared to the log-based scheme, but also makes it possible to implement count-limited objects (or ``clobs'' for short) -- i.e., encrypted keys, data, and other objects that can only be used when an associated virtual monotonic counter is within a certain range. Such count-limited objects include n-time use keys, n-out-of-m data blobs, n-copy migratable objects, and other variants, which have many potential uses in digital rights management (DRM), digital cash, itinerant computing, and other application areas.","PeriodicalId":401412,"journal":{"name":"Scalable Trusted Computing","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Virtual monotonic counters and count-limited objects using a TPM without a trusted OS\",\"authors\":\"L. Sarmenta, Marten van Dijk, C. W. O'Donnell, Jonathan Rhodes, S. Devadas\",\"doi\":\"10.1145/1179474.1179485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A trusted monotonic counter is a valuable primitive that enables a wide variety of highly scalable offline and decentralized applications that would otherwise be prone to replay attacks, including offline payment, e-wallets, virtual trusted storage, and digital rights management (DRM). In this paper, we show how one can implement a very large number of virtual monotonic counters on an untrusted machine with a Trusted Platform Module (TPM) or similar device, without relying on a trusted OS. We first present a log-based scheme that can be implemented with the current version of the TPM (1.2) and used in certain applications. We then show how the addition of a few simple features to the TPM makes it possible to implement a hash-tree-based scheme that not only offers improved performance and scalability compared to the log-based scheme, but also makes it possible to implement count-limited objects (or ``clobs'' for short) -- i.e., encrypted keys, data, and other objects that can only be used when an associated virtual monotonic counter is within a certain range. Such count-limited objects include n-time use keys, n-out-of-m data blobs, n-copy migratable objects, and other variants, which have many potential uses in digital rights management (DRM), digital cash, itinerant computing, and other application areas.\",\"PeriodicalId\":401412,\"journal\":{\"name\":\"Scalable Trusted Computing\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Trusted Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1179474.1179485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Trusted Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1179474.1179485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virtual monotonic counters and count-limited objects using a TPM without a trusted OS
A trusted monotonic counter is a valuable primitive that enables a wide variety of highly scalable offline and decentralized applications that would otherwise be prone to replay attacks, including offline payment, e-wallets, virtual trusted storage, and digital rights management (DRM). In this paper, we show how one can implement a very large number of virtual monotonic counters on an untrusted machine with a Trusted Platform Module (TPM) or similar device, without relying on a trusted OS. We first present a log-based scheme that can be implemented with the current version of the TPM (1.2) and used in certain applications. We then show how the addition of a few simple features to the TPM makes it possible to implement a hash-tree-based scheme that not only offers improved performance and scalability compared to the log-based scheme, but also makes it possible to implement count-limited objects (or ``clobs'' for short) -- i.e., encrypted keys, data, and other objects that can only be used when an associated virtual monotonic counter is within a certain range. Such count-limited objects include n-time use keys, n-out-of-m data blobs, n-copy migratable objects, and other variants, which have many potential uses in digital rights management (DRM), digital cash, itinerant computing, and other application areas.