用于自动三维面部表情识别的通用面部情绪标记

Amal Azazi, S. Lutfi, Ibrahim Venkat
{"title":"用于自动三维面部表情识别的通用面部情绪标记","authors":"Amal Azazi, S. Lutfi, Ibrahim Venkat","doi":"10.1109/ICCOINS.2014.6868369","DOIUrl":null,"url":null,"abstract":"Facial expressions convey human emotions as a simple and effective non-verbal communication method. Motivated by this special characteristic, facial expression recognition rapidly gains attention in social computing fields, especially in Human Computer Interaction (HCI). Identifying the optimal set of facial emotion markers is an important technique that not only reduces the feature vector dimensionality, but also impacts the recognition accuracy. In this paper, we propose a new emotion marker identification algorithm for automatic and person-independent 3D facial expression recognition system. First, we mapped the 3D face images into the 2D plane via conformal geometry to reduce the dimensionality. Then, the identification algorithm is designed to seek the best discriminative markers and the classifier parameters simultaneously by integrating three techniques viz., Differential Evolution (DE), Support Vector Machine (SVM) and Speed Up Robust Feature (SURF). The proposed system yielded an average recognition rate of 79% and outperformed the previous studies using the Bosphorus database.","PeriodicalId":368100,"journal":{"name":"2014 International Conference on Computer and Information Sciences (ICCOINS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identifying universal facial emotion markers for automatic 3D facial expression recognition\",\"authors\":\"Amal Azazi, S. Lutfi, Ibrahim Venkat\",\"doi\":\"10.1109/ICCOINS.2014.6868369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expressions convey human emotions as a simple and effective non-verbal communication method. Motivated by this special characteristic, facial expression recognition rapidly gains attention in social computing fields, especially in Human Computer Interaction (HCI). Identifying the optimal set of facial emotion markers is an important technique that not only reduces the feature vector dimensionality, but also impacts the recognition accuracy. In this paper, we propose a new emotion marker identification algorithm for automatic and person-independent 3D facial expression recognition system. First, we mapped the 3D face images into the 2D plane via conformal geometry to reduce the dimensionality. Then, the identification algorithm is designed to seek the best discriminative markers and the classifier parameters simultaneously by integrating three techniques viz., Differential Evolution (DE), Support Vector Machine (SVM) and Speed Up Robust Feature (SURF). The proposed system yielded an average recognition rate of 79% and outperformed the previous studies using the Bosphorus database.\",\"PeriodicalId\":368100,\"journal\":{\"name\":\"2014 International Conference on Computer and Information Sciences (ICCOINS)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Computer and Information Sciences (ICCOINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOINS.2014.6868369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer and Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS.2014.6868369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

面部表情作为一种简单有效的非语言交流方式,传达着人类的情感。由于面部表情的这一特性,面部表情识别在社会计算领域,特别是人机交互领域得到了迅速的关注。识别最优的面部情绪标记集是一项重要的技术,它不仅会降低特征向量的维数,而且会影响识别的准确性。本文提出了一种新的情感标记识别算法,用于自动、独立于人的三维面部表情识别系统。首先,我们通过保形几何将三维人脸图像映射到二维平面上,以降低图像的维数。然后,结合差分进化(DE)、支持向量机(SVM)和加速鲁棒特征(SURF)三种技术,设计识别算法,同时寻找最佳的判别标记和分类器参数。该系统的平均识别率为79%,优于先前使用博斯普鲁斯数据库的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying universal facial emotion markers for automatic 3D facial expression recognition
Facial expressions convey human emotions as a simple and effective non-verbal communication method. Motivated by this special characteristic, facial expression recognition rapidly gains attention in social computing fields, especially in Human Computer Interaction (HCI). Identifying the optimal set of facial emotion markers is an important technique that not only reduces the feature vector dimensionality, but also impacts the recognition accuracy. In this paper, we propose a new emotion marker identification algorithm for automatic and person-independent 3D facial expression recognition system. First, we mapped the 3D face images into the 2D plane via conformal geometry to reduce the dimensionality. Then, the identification algorithm is designed to seek the best discriminative markers and the classifier parameters simultaneously by integrating three techniques viz., Differential Evolution (DE), Support Vector Machine (SVM) and Speed Up Robust Feature (SURF). The proposed system yielded an average recognition rate of 79% and outperformed the previous studies using the Bosphorus database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信